How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

# Vectors of prime length

[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_padding="20px|20px|20px|20px"]

# Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.22.4" text_font="Raleway||||||||" background_color="#f4f4f4" box_shadow_style="preset2" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px"]Given a prime number $p$ and let $\overline{v_1},\overline{v_2},\dotsc ,\overline{v_n}$ be $n$ distinct vectors of length $p$ with integer coordinates in an $\mathbb{R}^3$ Cartesian coordinate system. Suppose that for any $1\leqslant j, there exists an integer $0<\ell  such that all three coordinates of $\overline{v_j} -\ell \cdot \overline{v_k}$ is divisible by $p$. Prove that $n\leqslant 6$.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.26.6" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="3.26.6"]

Kürschák Competition 2018[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="3.26.6" open="off"]Number Theory[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.26.6" open="off"]Hard[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="3.22.7" open="off"][/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px"]

# Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.26.6" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.26.6"]Prove that any two vectors are either perpendicular or colinear.[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.26.6"]

Note that $p^2| |\overline{v_j}-\ell\cdot\overline{v_k}|^2$. This implies that $p^2|\langle \overline{v_j},\overline{v_k}\rangle$. Also, from the Cauchy-Schwarz inequality we get $|\overline{v_j}|\cdot |\overline{v_k}|\ge |\langle\overline{v_j}.\overline{v_k}\rangle|$ hence $-|\overline{v_j}|\cdot |\overline{v_k}|\le\langle\overline{v_j}.\overline{v_k}\rangle\le |\overline{v_j}|\cdot |\overline{v_k}|$. Also, $latex | \overline{v_j}|\cdot |\overline{v_k}|=p^2$. As the dot product is also divisible by $p^2$, it has to be equal to $\pm p^2$ or 0. It cannot be $p^2$ because the vectors are distinct, hence it is either $-p^2$ or 0. Thus the two vectors are either perpendicular or colinear (adding to 0).

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.26.6"]

Let us plot the vectors in $\mathbb{R}^3$ and identify them with their tips (as the tails are at the origin). We join two tips by a straight line segment if they correspond to perpendicular vectors. Show that the number of straight lines is at least $\frac{n(n-2)}{2}$. Also prove that, there do not exist 4 vectors such that every possible pair of tips is joined by a line segment.

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.26.6"]From the last assertion, show that the number of straight line segments in the figure is at most $\frac{n^2}{3}$ (this is a special case of a result called Turan's theorem). Thus, $\frac{n^2}{3}\ge \frac{n(n-2)}{2}$. Hence $n\le 6$. [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.26.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px"]

# Watch video

[/et_pb_text][et_pb_code _builder_version="3.26.4"]
[/et_pb_code][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px"]

# Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Math Olympiad Program" url="https://www.cheenta.com/matholympiad/" url_new_window="on" image="https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.com/matholympiad/" link_option_url_new_window="on"]

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/matholympiad/" url_new_window="on" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3" background_layout="dark"][/et_pb_button][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px"]

# Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

# Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

### Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
HALL OF FAMESUPER STARSBOSE OLYMPIADBLOG
CAREERTEAM
support@cheenta.com