Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Vector Analysis

Let's discuss a beautiful problem useful for Physics Olympiad based on Vector Analysis.

Vector Analysis Problem:

Let (\vec{a}=6\vec{i}-3\vec{j}-6\vec{k}) and (\vec{d}=\vec{i}+\vec{j}+\vec{k}). Suppose that (\vec{a}=\vec{b}+\vec{c}) where (\vec{b}) is parallel to (\vec{d}) and (\vec{c}) is perpendicular to (\vec{d}). Then (\vec{c}) is
(A)(5\vec{i}-4\vec{j}-\vec{k})
(B)   ( 7\vec{i}-2\vec{j}-5\vec{k})
(C)    (4\vec{i}-5\vec{j}+\vec{k})
(D)    (3\vec{i}+6\vec{j}-9\vec{k})

Discussion:

In the given problem, (\vec{a})=(6\vec{i}-3\vec{j}-6\vec{k})
$$\vec{d}=\vec{i}+\vec{j}+\vec{k}$$ and $$\vec{a}=\vec{b}+\vec{c}...(i)$$
Now, let us consider (\vec{b}=\lambda\vec{d}) and (\vec{c}).(\vec{d})=)0.
Therefore, (b=\lambda\vec{i}+\lambda\vec{j}+\lambda\vec{j})
From (1),
$$6\vec{i}-3\vec{j}-6\vec{k}=\lambda\vec{i}+\lambda\vec{j}+\lambda\vec{k}+c$$
$$\Rightarrow\vec{c}=(6-\lambda)\vec{i}-(3+\lambda)\vec{j}-(6+\lambda)\vec{k}$$
Now,
$$\vec{c}.\vec{d}=0$$
$$\Rightarrow\lambda=-1$$
Hence,
$$\vec{c}=7\vec{i}-2\vec{j}-5\vec{k}$$

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com