INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

July 3, 2017

Vector Analysis

Let's discuss a beautiful problem useful for Physics Olympiad based on Vector Analysis.

Vector Analysis Problem:

Let (\vec{a}=6\vec{i}-3\vec{j}-6\vec{k}) and (\vec{d}=\vec{i}+\vec{j}+\vec{k}). Suppose that (\vec{a}=\vec{b}+\vec{c}) where (\vec{b}) is parallel to (\vec{d}) and (\vec{c}) is perpendicular to (\vec{d}). Then (\vec{c}) is
(A)(5\vec{i}-4\vec{j}-\vec{k})
(B)   ( 7\vec{i}-2\vec{j}-5\vec{k})
(C)    (4\vec{i}-5\vec{j}+\vec{k})
(D)    (3\vec{i}+6\vec{j}-9\vec{k})

Discussion:

In the given problem, (\vec{a})=(6\vec{i}-3\vec{j}-6\vec{k})
$$\vec{d}=\vec{i}+\vec{j}+\vec{k}$$ and $$\vec{a}=\vec{b}+\vec{c}...(i)$$
Now, let us consider (\vec{b}=\lambda\vec{d}) and (\vec{c}).(\vec{d})=)0.
Therefore, (b=\lambda\vec{i}+\lambda\vec{j}+\lambda\vec{j})
From (1),
$$6\vec{i}-3\vec{j}-6\vec{k}=\lambda\vec{i}+\lambda\vec{j}+\lambda\vec{k}+c$$
$$\Rightarrow\vec{c}=(6-\lambda)\vec{i}-(3+\lambda)\vec{j}-(6+\lambda)\vec{k}$$
Now,
$$\vec{c}.\vec{d}=0$$
$$\Rightarrow\lambda=-1$$
Hence,
$$\vec{c}=7\vec{i}-2\vec{j}-5\vec{k}$$

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com