# Understand the problem

Let $ABC$ be an equilateral triangle and $P$ in its interior. The distances from $P$ to the triangle’s sides are denoted by $a^2, b^2,c^2$respectively, where $a,b,c>0$. Find the locus of the points $P$ for which $a,b,c$ can be the sides of a non-degenerate triangle.

##### Source of the problem
Romanian Master in Mathematics, 2008
Geometry
Medium
##### Comments
This problem obviously points towards an application of trilinear coordinates (see more here).

# Start with hints

Do you really need a hint? Try it first!

If there exists a non-degenerate triangle with sides $a,b,c$ then the area of the triangle must be positive. Make use of this fact employing Heron’s formula.
Hint 1 will give you a locus in terms of trilinear coordinates. However, it is easier to work in cartesian coordinates as we are already familiar with many curves in them.
Take $A=(1,0,0), B= (0,1,0), C= (0,0,1)$. There is a simple relationship between the cartesian and trilinear coordinates for this choice.

.Note that all points in the plane of $ABC$ satisfy $x+y+z=1$ (why?). For any $P$ in the interior, Let $Q$ be the foot of the perpendicular from $P$ to $AB$ and $R$ be the foot of the perpendicular from $P$ to the XY plane. It is possible to show that $\frac{PR}{PQ}= \sqrt{\frac{2}{3}}$ (it is because the angle between the plane and the Z axis is $\arccos \sqrt{\frac{2}{3}}$). Hence, $\frac{z}{c^2}=\sqrt{\frac{3}{2}}$. By symmetry, $\frac{x}{a^2}=\sqrt{\frac{2}{3}}=\frac{y}{b^2}$. This relates the two coordinate systems. For a triangle with sides $a,b,c$, the square of the area is $\frac{1}{16}(a+b+c)(-a+b+c)(a-b+c)(a+b-c)$. For this to be positive, we must have (after simplification) $a^4+b^4+c^4< 2(a^2b^2+b^2c^2+c^2a^2)$. In cartesian coordinates, this translates to $\frac{3}{2}(x^2+y^2+z^2)<3(xy+yz+zx)$, which is equivalent to $(x+y+z)^2>2(x^2+y^2+z^2)$. As $P$ lies on the plane $x+y+z=1$, this means that $x^2+y^2+z^2<\frac{1}{2}$. This last equation is that of the interior of a solid sphere. Hence, our desired locus is the intersection of this solid sphere with the plane $x+y+z=1$, which is precisely the interior of the circumcircle of $ABC$.

# Connected Program at Cheenta

#### Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

# Similar Problems

## Solving a congruence

Understand the problemProve that the number of ordered triples in the set of residues of $latex p$ such that , where and is prime is . Brazilian Olympiad Revenge 2010 Number Theory Medium Elementary Number Theory by David Burton Start with hintsDo you really need...

## Inequality involving sides of a triangle

Understand the problemLet be the lengths of sides of a (possibly degenerate) triangle. Prove the inequalityLet be the lengths of sides of a triangle. Prove the inequalityCaucasus Mathematical Olympiad Inequalities Easy An Excursion in Mathematics Start with hintsDo...

## Vectors of prime length

Understand the problemGiven a prime number and let be distinct vectors of length with integer coordinates in an Cartesian coordinate system. Suppose that for any , there exists an integer such that all three coordinates of is divisible by . Prove that .Kürschák...

## Missing digits of 34!

Understand the problem34!=295232799cd96041408476186096435ab000000 Find $latex a,b,c,d$ (all single digits).BMO 2002 Number Theory Easy An Excursion in Mathematics Start with hintsDo you really need a hint? Try it first!Get prepared to find the residue of 34! modulo...

## An inequality involving unknown polynomials

Understand the problemFind all the polynomials of a degree with real non-negative coefficients such that , . Albanian BMO TST 2009 Algebra Easy An Excursion in Mathematics Start with hintsDo you really need a hint? Try it first!This problem is all about...

## Hidden triangular inequality (PRMO Problem 23, 2019)

Problem Let ABCD be a convex cyclic quadrilateral . Suppose P is a point in the plane of the quadrilateral such that the sum of its distances from the vertices of ABCD is the least .If {PA,PB,PC,PD} = {3,4,6,8}.What is the maximum possible area of ABCD? TopicGeometry...

## PRMO – 2019 – Questions, Discussions, Hints, Solutions

This is a work in progress. Please post your answers in the comment. We will update them here. Point out any error that you see here. Thank you. 1. 42. 133. 134. 725. 106. 297. 518. 499. 1410. 5511. 612. 1813. 1014. 5315. 4516. 4017. 3018. 2019. 1320. Bonus21. 1722....

## Bangladesh MO 2019 Problem 1 – Number Theory

A basic and beautiful application of Numebr Theory and Modular Arithmetic to the Bangladesh MO 2019 Problem 1.

## Functional equation dependent on a constant

Understand the problemFind all real numbers for which there exists a non-constant function satisfying the following two equations for all i) andii) Baltic Way 2016 Functional Equations Easy Functional Equations by BJ Venkatachala Start with hintsDo you really need...

## Pigeonhole principle exercise

Problem Let ABCD be a convex cyclic quadrilateral . Suppose P is a point in the plane of the quadrilateral such that the sum of its distances from the vertices of ABCD is the least .If {PA,PB,PC,PD} = {3,4,6,8}.What is the maximum possible area of ABCD? TopicGeometry...