How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Triangle and integers | AIME I, 1995 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Triangle and integers.

Triangle and integers - AIME I, 1995

Triangle ABC is isosceles, with AB=AC and altitude AM=11, suppose that there is a point D on AM with AD=10 and \(\angle BDC\)=3\(\angle BAC\). then the perimeter of \(\Delta ABC\) may be written in the form \(a+\sqrt{b}\) where a and b are integers, find a+b.

Triangle and integers
  • is 107
  • is 616
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 616.

AIME I, 1995, Question 9

Plane Trigonometry by Loney

Try with Hints

First hint

Let x= \(\angle CAM\)

\(\Rightarrow \angle CDM =3x\)

\(\Rightarrow \frac{tan3x}{tanx}=\frac{\frac{CM}{1}}{\frac{CM}{11}}\)=11 [by trigonometry ratio property in right angled triangle]

Second Hint

\(\Rightarrow \frac{3tanx-tan^{3}x}{1-3tan^{2}x}=11tanx\)

solving we get, tanx=\(\frac{1}{2}\)

\(\Rightarrow CM=\frac{11}{2}\)

Final Step

\(\Rightarrow 2(AC+CM)\) where \(AC=\frac{11\sqrt {5}}{2}\) by Pythagoras formula

=\(\sqrt{605}+11\) then a+b=605+11=616.

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.