Get inspired by the success stories of our students in IIT JAM MS, ISI  MStat, CMI MSc Data Science.  Learn More 

Tracing the Trace | ISI MStat 2016 PSB Problem 3

This ISI MStat 2016 problem is an application of the ideas of tracing the trace and Eigen values of a matrix and using a cute sum of squares identity.

Problem- Tracing the Trace

Suppose A is an \(n × n\) real symmetric matrix such that
\(Tr(A^2) = T r(A) = n\). Show that all the eigenvalues of A are equal to 1.

This problem is from ISI MStat 2016 PSB ( Problem #3)

Prerequisites

  • Trace of a Matrix
  • Eigen values of \(A^n\) w.r.t to the eigen values of \(A\).
  • Sum of Squares \(\geq 0\).

Solution

\( Av = {\lambda}v \Rightarrow A^nv = {\lambda}^nv\).

Since, A is a real symmetric matrix, then all the eigen values of the matrix A are real say {\( {\lambda}_1, {\lambda}_2, ..., {\lambda}_n\)}.

\(Tr(A^2) = \sum_{i=1}^{n} {{\lambda}_i}^2 = Tr(A) = \sum_{i=1}^{n} {{\lambda}_i} = n\)

\( \Rightarrow n\sum_{i=1}^{n} {{\lambda}_i}^2 = (\sum_{i=1}^{n} {{\lambda}_i})^2\)

\( \Rightarrow (n-1)\sum_{i=1}^{n} {{\lambda}_i}^2 = \sum_{i, j = 1, i \neq j }^{n} 2{\lambda}_i{\lambda}_j\)

\( \Rightarrow \sum_{i=1}^{n} ({{\lambda}_i - {\lambda}_j })^2 = 0\)

\( \Rightarrow {\lambda}_i = {\lambda}_j = \lambda \forall i \neq j \)

\( \Rightarrow Tr(A) = n\lambda = n \Rightarrow \lambda = 1\).

This ISI MStat 2016 problem is an application of the ideas of tracing the trace and Eigen values of a matrix and using a cute sum of squares identity.

Problem- Tracing the Trace

Suppose A is an \(n × n\) real symmetric matrix such that
\(Tr(A^2) = T r(A) = n\). Show that all the eigenvalues of A are equal to 1.

This problem is from ISI MStat 2016 PSB ( Problem #3)

Prerequisites

  • Trace of a Matrix
  • Eigen values of \(A^n\) w.r.t to the eigen values of \(A\).
  • Sum of Squares \(\geq 0\).

Solution

\( Av = {\lambda}v \Rightarrow A^nv = {\lambda}^nv\).

Since, A is a real symmetric matrix, then all the eigen values of the matrix A are real say {\( {\lambda}_1, {\lambda}_2, ..., {\lambda}_n\)}.

\(Tr(A^2) = \sum_{i=1}^{n} {{\lambda}_i}^2 = Tr(A) = \sum_{i=1}^{n} {{\lambda}_i} = n\)

\( \Rightarrow n\sum_{i=1}^{n} {{\lambda}_i}^2 = (\sum_{i=1}^{n} {{\lambda}_i})^2\)

\( \Rightarrow (n-1)\sum_{i=1}^{n} {{\lambda}_i}^2 = \sum_{i, j = 1, i \neq j }^{n} 2{\lambda}_i{\lambda}_j\)

\( \Rightarrow \sum_{i=1}^{n} ({{\lambda}_i - {\lambda}_j })^2 = 0\)

\( \Rightarrow {\lambda}_i = {\lambda}_j = \lambda \forall i \neq j \)

\( \Rightarrow Tr(A) = n\lambda = n \Rightarrow \lambda = 1\).

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
rockethighlight