How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Total Charge of a Sphere

Try this problem, useful for the Physics Olympiad Problem based on total charge of a sphere.

The Problem:

Suppose a charge (Q) is distributed within a sphere of radius (R) in such a way that the charge density (\rho(r)) at a distance r from the centre of the sphere is
$$ \rho(r)=K(R-r) \hspace{2mm }for\hspace{2mm} 0<r<R$$
$$ 0 \hspace{2mm} for \hspace{2mm} r>R$$

Determine the total charge (Q).

Let us consider a thin spherical shell of radius (r) and thickness (dr). Charge within it is (\rho(r).4\pi r^2dr). Therefore, the total charge $$ Q=\int_{0}^{R}\rho(x).4\pi r^2dr$$$$=4\pi K\int_{0}^{R}(R-r)^2dr$$$$=\pi KR^4/3$$

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.