INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

August 20, 2017

Total Charge of a Sphere

Try this problem, useful for the Physics Olympiad Problem based on total charge of a sphere.

The Problem:

Suppose a charge (Q) is distributed within a sphere of radius (R) in such a way that the charge density (\rho(r)) at a distance r from the centre of the sphere is
$$ \rho(r)=K(R-r) \hspace{2mm }for\hspace{2mm} 0<r<R$$
$$ 0 \hspace{2mm} for \hspace{2mm} r>R$$

Determine the total charge (Q).

Let us consider a thin spherical shell of radius (r) and thickness (dr). Charge within it is (\rho(r).4\pi r^2dr). Therefore, the total charge $$ Q=\int_{0}^{R}\rho(x).4\pi r^2dr$$$$=4\pi K\int_{0}^{R}(R-r)^2dr$$$$=\pi KR^4/3$$

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.