How Cheenta works to ensure student success?
Explore the Back-Story

Test of Mathematics Solution Subjective 35 - Divisibility by 16

Test of Mathematics at the 10+2 Level

Test of Mathematics Solution Subjective 35 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also see: Cheenta I.S.I. & C.M.I. Entrance Course


Problem

(a) Prove that, for any odd integer n, $ n^4 $ when divided by $16$ always leaves remainder $1$.

(b) Hence or otherwise show that we cannot find integers $n_1 , n_2 , ... , n_8 $ such that $n_1^4 + n_2^4 + ... + n_8^4 = 1993 $.

Solution

For part (a) we consider $n = 2k +1$ and expand it's fourth power binomially to get $ (2k+1)^4 = {{4} \choose {0}} (2k)^4 +{{4} \choose {1}} (2k)^3 + {{4} \choose {2}} (2k)^2 + {{4} \choose {3}} (2k)^1 + {{4} \choose {4}} (2k)^0 = 16k^4 + 32k^3 + 24k^2 + 8k + 1 $

Now $24k^2 + 8k = 8k(3k+1) $ ; if $k$ is even then $8k$ is divisible by $16$ and if $k$ is odd $3k+1$ is even and product of $8k$ and $3k+1$ is divisible by $16$. Since $16k^4 + 32 k^3 $ is already divisible by $16$ we conclude $ (2k+1)^4 $ when divided by $16$ gives $1$ as remainder.

For part (b) we note that $1993$ when divided by $16$, produces $9$ as the remainder. Each of the eight of fourth powers when divided by $16$ produces either $0$ (when $n_i $ is even) or $1$ (when $n_i $ is odd using part (a)) as remainder. Thus they can add up to at most $8$ (modulo $16$) hence can never be equal to $9$ (which $1993$ is modulo $16$).

Test of Mathematics at the 10+2 Level

Test of Mathematics Solution Subjective 35 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also see: Cheenta I.S.I. & C.M.I. Entrance Course


Problem

(a) Prove that, for any odd integer n, $ n^4 $ when divided by $16$ always leaves remainder $1$.

(b) Hence or otherwise show that we cannot find integers $n_1 , n_2 , ... , n_8 $ such that $n_1^4 + n_2^4 + ... + n_8^4 = 1993 $.

Solution

For part (a) we consider $n = 2k +1$ and expand it's fourth power binomially to get $ (2k+1)^4 = {{4} \choose {0}} (2k)^4 +{{4} \choose {1}} (2k)^3 + {{4} \choose {2}} (2k)^2 + {{4} \choose {3}} (2k)^1 + {{4} \choose {4}} (2k)^0 = 16k^4 + 32k^3 + 24k^2 + 8k + 1 $

Now $24k^2 + 8k = 8k(3k+1) $ ; if $k$ is even then $8k$ is divisible by $16$ and if $k$ is odd $3k+1$ is even and product of $8k$ and $3k+1$ is divisible by $16$. Since $16k^4 + 32 k^3 $ is already divisible by $16$ we conclude $ (2k+1)^4 $ when divided by $16$ gives $1$ as remainder.

For part (b) we note that $1993$ when divided by $16$, produces $9$ as the remainder. Each of the eight of fourth powers when divided by $16$ produces either $0$ (when $n_i $ is even) or $1$ (when $n_i $ is odd using part (a)) as remainder. Thus they can add up to at most $8$ (modulo $16$) hence can never be equal to $9$ (which $1993$ is modulo $16$).

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
Math Olympiad Program
magic-wandrockethighlight