How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

Learn MoreThis is a problem from TOMATO Objective 21 based on positive integers. This problem is helpful for ISI Entrance Exam. Try out the problem.

**Problem: TOMATO Objective 21 **

Suppose x & y are positive integers, x>y, and 3x+4y & 2x+3y when divided by 5, leave remainders 2&3 respectively. It follows that when (x-y) is divided by 5, the remainder necessarily equals

(a) 2 (b)1 (c) 4 (d) none of these

According to the problem,

$(3x+2y)\equiv 2 \bmod{5} $

$(2x+3y)\equiv 3 \bmod{5} $

subtracting the above 2 relations we get,

$(x-y)\equiv (-1) \bmod{5} $

i.e. $(x-y)\equiv 4 \bmod{5} $

Hence the remainder is $4$.

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL