INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

April 23, 2020

Squares and Triangles | AIME I, 1999 | Question 4

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Squares and triangles.

Squares and triangles - AIME I, 1999


The two squares share the same centre O and have sides of length 1, The length of AB is \(\frac{43}{99}\) and the area of octagon ABCDEFGH is \(\frac{m}{n}\) where m and n are relatively prime positive integers, find m+n.

Squares and Triangles
  • is 107
  • is 185
  • is 840
  • cannot be determined from the given information

Key Concepts


Squares

Triangles

Algebra

Check the Answer


Answer: is 185.

AIME I, 1999, Question 4

Geometry Vol I to IV by Hall and Stevens

Try with Hints


First hint

Triangle AOB, triangleBOC, triangleCOD, triangleDOE, triangleEOF, triangleFOG, triangleGOH, triangleHOA are congruent triangles

Second Hint

with each area =\(\frac{\frac{43}{99} \times \frac{1}{2}}{2}\)

Final Step

then the area of all 8 of them is (8)\(\frac{\frac{43}{99} \times \frac{1}{2}}{2}\)=\(\frac{86}{99}\) then 86+99=185.

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com