INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

September 29, 2016

Some Direct Inequalities | TOMATO Subjective 80

This is a beautiful problem based on Some Direct Inequalities from Test of Mathematics Subjective Problem no. 80.

Problem: Some Direct Inequalities

If \(a,b,c\) are positive numbers, then show that

\(\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}+\frac{a^2+b^2}{a+b}\geq a+b+c\)

Solution: This problem can be solved using a direct application of the Titu's Lemma but we will instead prove the lemma first using the Cauchy-Schwarz inequality.

According to the Cauchy-Schwarz inequality we have,

\(\left(a_1^2+a_2^2+\cdots+a_n^2\right)\left(b_1^2+b_2^2+\cdots+b_n^2\right)\ge \left(a_1b_1+a_2b_2+\cdots+a_nb_n\right)^2 \)

Replacing \(a_i\to \dfrac{a_i}{\sqrt{b_i}}\) and \(b_i\to \sqrt{b_i}\) we get,

\(\left(\dfrac{a_1^2}{b_1}+\dfrac{a_2^2}{b_2}+\cdots +\dfrac{a_n^2}{b_n}\right)\left(b_1+b_2+\cdots+b_n\right)\ge \left(a_1+a_2+\cdots+a_n\right)^2,\)

which is equivalent to

\(\dfrac{a_1^2}{b_1}+\dfrac{a_2^2}{b_2}+\cdots+\dfrac{a_n^2}{b_n}\geq \dfrac{\left(a_1+a_2+\cdots+a_n\right)^2}{b_1+b_2+\cdots+b_n}\)

Now this inequality is referred to as the Titu's Lemma.

This brings us to the problem which can be observed to be a simple application of the lemma. We just need to make the following substitutions.

\(a_1=b, a_2=c\) and \(b_1=b_2=b+c\)

Then we have,

\(\dfrac{b^2}{b+c}+\dfrac{c^2}{b+c}\geq \dfrac{(b+c)^2}{2(b+c)}\)

\(=>\dfrac{b^2+c^2}{b+c}\geq \dfrac{b+c}{2}\)

Thus similarly we have,

\(=>\dfrac{c^2+a^2}{c+a}\geq \dfrac{c+a}{2}\) and \(=>\dfrac{a^2+b^2}{a+b}\geq \dfrac{a+b}{2}\)

Adding the three inequalities we get,

\(=>\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}+\dfrac{a^2+b^2}{a+b}\geq \dfrac{b+c}{2}+\dfrac{c+a}{2}+\dfrac{a+b}{2}\)

\(=>\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}+\dfrac{a^2+b^2}{a+b}\geq \dfrac{2(a+b+c)}{2}\)

\(=>\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}+\dfrac{a^2+b^2}{a+b}\geq {a+b+c}\)

Hence Proved.

Some Useful Links:

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.