How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Some Direct Inequalities | TOMATO Subjective 80

This is a beautiful problem based on Some Direct Inequalities from Test of Mathematics Subjective Problem no. 80.

Problem: Some Direct Inequalities

If \(a,b,c\) are positive numbers, then show that

\(\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}+\frac{a^2+b^2}{a+b}\geq a+b+c\)

Solution: This problem can be solved using a direct application of the Titu's Lemma but we will instead prove the lemma first using the Cauchy-Schwarz inequality.

According to the Cauchy-Schwarz inequality we have,

\(\left(a_1^2+a_2^2+\cdots+a_n^2\right)\left(b_1^2+b_2^2+\cdots+b_n^2\right)\ge \left(a_1b_1+a_2b_2+\cdots+a_nb_n\right)^2 \)

Replacing \(a_i\to \dfrac{a_i}{\sqrt{b_i}}\) and \(b_i\to \sqrt{b_i}\) we get,

\(\left(\dfrac{a_1^2}{b_1}+\dfrac{a_2^2}{b_2}+\cdots +\dfrac{a_n^2}{b_n}\right)\left(b_1+b_2+\cdots+b_n\right)\ge \left(a_1+a_2+\cdots+a_n\right)^2,\)

which is equivalent to

\(\dfrac{a_1^2}{b_1}+\dfrac{a_2^2}{b_2}+\cdots+\dfrac{a_n^2}{b_n}\geq \dfrac{\left(a_1+a_2+\cdots+a_n\right)^2}{b_1+b_2+\cdots+b_n}\)

Now this inequality is referred to as the Titu's Lemma.

This brings us to the problem which can be observed to be a simple application of the lemma. We just need to make the following substitutions.

\(a_1=b, a_2=c\) and \(b_1=b_2=b+c\)

Then we have,

\(\dfrac{b^2}{b+c}+\dfrac{c^2}{b+c}\geq \dfrac{(b+c)^2}{2(b+c)}\)

\(=>\dfrac{b^2+c^2}{b+c}\geq \dfrac{b+c}{2}\)

Thus similarly we have,

\(=>\dfrac{c^2+a^2}{c+a}\geq \dfrac{c+a}{2}\) and \(=>\dfrac{a^2+b^2}{a+b}\geq \dfrac{a+b}{2}\)

Adding the three inequalities we get,

\(=>\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}+\dfrac{a^2+b^2}{a+b}\geq \dfrac{b+c}{2}+\dfrac{c+a}{2}+\dfrac{a+b}{2}\)

\(=>\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}+\dfrac{a^2+b^2}{a+b}\geq \dfrac{2(a+b+c)}{2}\)

\(=>\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}+\dfrac{a^2+b^2}{a+b}\geq {a+b+c}\)

Hence Proved.

Some Useful Links:

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.