Understand the problem

Prove that the number of ordered triples $(x, y, z)$  in the set of residues of p such that $(x+y+z)^2  \equiv axyz \mod{p}$, where $gcd(a, p) = 1$ and $p$ is prime is $p^2 + 1$.
Source of the problem
Brazilian Olympiad Revenge 2010
Topic
Number Theory
Difficulty Level
Medium
Suggested Book
Elementary Number Theory by David Burton

Start with hints

Do you really need a hint? Try it first!

First, assume that at least one of x,y,z is zero. Show that there are 3p-2 solutions in this case. Next we need to consider the case where none of them is zero.

Let us denote the residue class of p by \mathbb{Z}_p. Show that, there exist non-zero b,c in \mathbb{Z}_p such that y\equiv bx\;\text{mod}\; p and z\equiv cy\;\text{mod}\; p.

From hint 2, show that (1+b+bc)^2\equiv ab^2cx\;\text{mod}\;p. This means that x\equiv a^{-1}c^{-1}(1+b^{-1}+c)^2\;\text{mod}\;p (you need to convince yourself that the inverses exist).  Now it becomes a matter of simply choosing b,c.

Note that, 1+b^{-1}+c cannot be zero. Given any b\neq p-1, there exists exactly one non-zero c such that 1+b^{-1}+c is 0 modulo p. Hence, in this case there are (p-2)^2 choices. For b=p-1, this special c is actually 0. Hence in this case there are p-1 choices. Thus, the total number of choices is (p-2)^2+(p-1)=p^2-4p+4+(p-1)=p^2-3p+3. Adding to this the 3p-1 cases considered in hint 1, we get p^2+1 as the answer.

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Squares and Triangles | AIME I, 2008 | Question 2

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2008 based on Squares and Triangles.

Percentage Problem | AIME I, 2008 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2008 based on Percentage. you may use sequential hints.

Smallest Positive Integer | PRMO 2019 | Question 14

Try this beautiful problem from the Pre-RMO, 2019 based on Smallest Positive Integer. You may use sequential hints to solve the problem.

Circles and Triangles | AIME I, 2012 | Question 13

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Circles and triangles.

Complex Numbers and Triangles | AIME I, 2012 | Question 14

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Complex Numbers and Triangles.

Triangles and Internal bisectors | PRMO 2019 | Question 10

Try this beautiful problem from the Pre-RMO, 2019 based on Triangles and Internal bisectors. You may use sequential hints to solve the problem.

Angles in a circle | PRMO-2018 | Problem 80

Try this beautiful problem from PRMO, 2018 based on Angles in a circle. You may use sequential hints to solve the problem.

Digit Problem from SMO, 2012 | Problem 14

Try this beautiful problem from Singapore Mathematics Olympiad, SMO, 2012 based on digit. You may use sequential hints to solve the problem.

Problem on Semicircle | AMC 8, 2013 | Problem 20

Try this beautiful problem from AMC-8, 2013, (Problem-20) based on area of semi circle.You may use sequential hints to solve the problem.

Radius of semicircle | AMC-8, 2013 | Problem 23

Try this beautiful problem from Geometry: Radius of semicircle from AMC-8, 2013, Problem-23. You may use sequential hints to solve the problem.