Categories
Algebra Arithmetic Math Olympiad PRMO

Smallest value | PRMO 2018 | Question 15

Try this beautiful problem from the Pre-RMO, 2018 based on the Smallest value. You may use sequential hints to solve the problem.

Try this beautiful problem from the PRMO, 2018 based on Smallest value.

Smallest Value – PRMO 2018


Let a and b natural numbers such that 2a-b, a-2b and a+b are all distinct squares. What is the smallest possible value of b?

  • is 107
  • is 21
  • is 840
  • cannot be determined from the given information

Key Concepts


Algebra

Numbers

Multiples

Check the Answer


But try the problem first…

Answer: is 21.

Source
Suggested Reading

PRMO, 2018, Question 15

Higher Algebra by Hall and Knight

Try with Hints


First hint

2a-b=\(k_1^2\) is equation 1

a-2b=\(k_2^2\) is equation 2

a+b=\(k_3^2\) is equation 3

Second Hint

adding 2 and 3 we get

2a-b=\(k_2^2+k_3^2\)

or, \(k_2^2+k_3^2\)=\(k_1^2\) \((k_2<k_3)\)

Final Step

For least ‘b’ difference of \(k_3^2\) and \(k_2^2\) is also least and must be multiple of 3

or, \(k_2^2\)=a-2b=\(9^2\) and \(k_3^2\)=a+b=\(12^2\)

or, \(k_3^2-k_2^2\)=3b=144-81=63

or, b=21

or, least b is 21.

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.