INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

March 28, 2020

Smallest Perimeter of Triangle | AIME I, 2015 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2015 based on Smallest Perimeter of Triangle.

Smallest Perimeter of Triangle - AIME 2015

Triangle \(ABC\) has positive integer side lengths with \(AB=AC\). Let \(I\) be the intersection of the bisectors of \(\angle B\) and \(\angle C\). Suppose \(BI=8\). Find the smallest possible perimeter of \(\triangle ABC\)..

  • is 107
  • is 108
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 108.

AIME, 2015, Question 11

Geometry Vol I to IV by Hall and Stevens

Try with Hints

First hint

Let $D$ be the midpoint of $\overline{BC}$. Then by SAS Congruence, $\triangle ABD \cong \triangle ACD$, so $\angle ADB = \angle ADC = 90^o$.Now let $BD=y$, $AB=x$, and $\angle IBD$ =$ \frac{\angle ABD}{2}$ = $\theta$.Then $\mathrm{cos}{(\theta)} = \frac{y}{8}$and $\mathrm{cos}{(2\theta)} = \frac{y}{x} = 2\mathrm{cos^2}{(\theta)} - 1 = \frac{y^2-32}{32}$.

Second Hint

Cross-multiplying yields $32y = x(y^2-32)$.

Since $x,y>0$, $y^2-32$ must be positive, so $y > 5.5$.

Additionally, since $\triangle IBD$ has hypotenuse $\overline{IB}$ of length $8$, $BD=y < 8$.

Therefore, given that $BC=2y$ is an integer, the only possible values for $y$ are $6$, $6.5$, $7$, and $7.5$.

However, only one of these values, $y=6$, yields an integral value for $AB=x$, so we conclude that $y=6$ and $x=\frac{32(6)}{(6)^2-32}=48$.

Final Step

Thus the perimeter of $\triangle ABC$ must be $2(x+y) = {108}$.

Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.