Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Sine Rule and Triangle | Tomato Subjective 120

Sine rule is an important rule relating to the sides and angles of any triangle. Here is a Subjective problem no. 120 from TOMATO. Try it.

Problem: Sine Rule and Triangle

(i) If A + B +C = n \pi  , show that \sin 2A + \sin 2B + \sin 2C = (-1)^{n-1} 4 \sin A \sin B \sin C
(ii) Let triangles ABC and DEF be inscribed in the same circle. If the triangles are of equal perimeter, then prove that \sin A + \sin B + \sin C = \sin D + \sin E + \sin F
(iii) State and prove the converse of (ii) above

Discussion:

(i) We know transformation formula from trigonometry \sin x + \sin y = 2 \sin \dfrac{x+y}{2} \cos \dfrac {x-y}{2}

Hence \sin 2A + \sin 2B + \sin 2C = 2 \sin \dfrac{2A+2B}{2} \cos \dfrac {2A-2B}{2} + sin 2C = 2 \sin (A+B) \cos (A-B) + \sin 2C

Now we know that A + B = n \pi - C \Rightarrow \sin (A+B) = \sin (n \pi - C) = (-1)^{n-1} \sin C

So 2\sin (A+B) \cos (A-B) + \sin 2C = 2(-1)^{n-1} \sin C \cos (A-B) + 2 \sin C \cos C = 2(-1)^{n-1} \sin C \cos (A-B) + 2 \sin C \cos (n\pi -(A+B))

= 2(-1)^{n-1} \sin C \cos (A-B) + 2 (-1)^n \sin C \cos (A+B)

= 2(-1)^{n-1} \sin C (\cos (A-B) - \cos (A+B))

= 4(-1)^{n-1} \sin C \sin A \sin B

(ii)

Since the two triangles are inscribed in the same circle, they must have the same circumradius. Let the common circumradius be R. If a, b, c, d, e, f be the sides opposite to the sides BC, CA, AB, EF, DF, DE respectively, then using the rule of sines we can say,

\dfrac{\sin A}{a} = \dfrac { \sin B }{ b} = \dfrac {\sin C }{c} = \dfrac {1} {2R}  and

\dfrac{\sin D}{d} = \dfrac { \sin E }{ e} = \dfrac {\sin F }{f} = \dfrac {1} {2R}

Hence \sin A = \dfrac {a}{2R}, sin B = \dfrac{b}{2R}, \sin C = \dfrac {c}{2R} \Rightarrow \sin A + \sin B + \sin C = \dfrac {a+b+c}{2R}

Similarly \sin D + \sin E + \sin F = \dfrac {d + e + f}{2R}

As the perimeter of the triangle are equal, hence a+b+c = d+e+f. This implies \sin A + \sin B + \sin C = \sin D + \sin E + \sin F

(iii)

We apply the sine rule in reverse order to get the converse.

Chatuspathi:

  • What is this topic: Property of triangles
  • What are some of the associated concept: Rule of sines
  • Where can learn these topics: Cheenta I.S.I. & C.M.I. course, discusses these topics in the ‘Trigonometry Module’ module.
  • Book Suggestions: Trigonometry by S.L. Loney

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com