INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

May 6, 2019

Shortest distance between curves - I.S.I. Entrance 2019

[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Consider the following subsets of the plane: $$ \displaystyle { C_1 = \{ (x, y) : x > 0, y = \frac{1}{x} \} } $$ and $$ \displaystyle { C_2 = \{ (x, y) : x < 0, y = -1 + \frac{1}{x} \} } $$ Given any two points P = (x, y) and Q = (u, v) of the plane, their distance d(P, Q) is defined by $$ \displaystyle { d(P, Q) = \sqrt{(x-u)^2 + (y-v)^2}  } $$ Show that there exists a unique choice of points \( P_0 \in C_1 \) and \( Q_0 \in C_2 \) such that $$ d(P_0, Q_0) \leq d(P, Q)  $$ for all \( P \in C_1 \) and \( Q \in C_2 \).

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.22.4" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="3.22.4"]

I.S.I. (Indian Statistical Institute, B.Stat, B.Math) Entrance. Subjective Problem 8 from 2019 

[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="3.22.4" open="off"]

Differential Calculus

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.22.4" open="off"]

8 out 10

[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="3.22.4" open="off"]

Problems in Calculus by I.A. Maron

[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.22.4" tab_text_color="#ffffff" body_font="Raleway||||||||" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]

Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.22.4"]

Shortest distance from a point to a line is the length of the perpendicular drawn from the point to the line. This is the key idea. Suppose f(t) and g(s) are two (smooth) curves. Then the shortest distance between them is along the common normal (perpendicular) on the two curves. How to draw perpendiculars to curves? Pick a point on the curve (suppose A in the picture).  isi 2019 problem 8 - normal to a curve Next, draw a tangent at A (since the curve is smooth, that infinitely differentiable at every point, we can do this). tangent at A Locally (near A), this tangent is the approximation of the curve.  Finally draw a perpendicular to this tangent line, at the point A. This is regarded as perpendicular to the curve (normal to the curve) at A. Normal at A 

How to find the shortest path between two (smooth curves)?

Draw all possible normals to both curves. That draws all 'perpendiculars' to both curves erected at all points on both curves.  If any normal (perpendicular) is common between the two curves then that is possibly the shortest path. (You still need to check some other details. But that is part of a calculus course, not this discussion).  Can you show there is a common normal between f(x) = 1/x (x > 0) and \( g(x) = -1 + \frac{1}{x}, (x < 0) \)?

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.4"]

Consider \( f(x) = \frac{1}{x}, (x > 0) \). The slope of the tangent line at any point is the derivative of the function. \(\frac {d} {dx} f(x) = \frac {-1}{x^2} \) Slope of normal which is perpendicular to the tangent is negative reciprocal of it. Hence it is \( x^2 \). Parametrize the curve \( f(x) = \frac{1}{ x} \) as \( (t, \frac{1}{ t}) \) Hence the equation of the normal through a point \( (t, \frac{1}{ t}) \) is $$ y - \frac{1}{t} = t^2 (x - t) $$ Similarly, parametrize the other curve and find the equation of the normal. Use some other variable for this. 

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.4"]

Consider \( g(x) = -1 + \frac{1}{x}, (x > 0) \). The slope of the tangent line at any point is the derivative of the function. \(\frac {d} {dx} g(x) = \frac {-1}{x^2} \) Slope of normal which is perpendicular to the tangent is negative reciprocal of it. Hence it is \( x^2 \). Parametrize the curve \( g(x) = -1 +  \frac{1}{ x} \) as \( (r, -1 + \frac{1}{ r}) \) Hence the equation of the normal through a point \( (r, -1 + \frac{1}{ r}) \) is $$ y + 1 - \frac{1}{r} = r^2 (x - r) $$ We have generic equations for family of normal for each curve:  \( y + 1 - \frac{1}{r} = r^2 (x - r) \)  \( y - \frac{1}{t} = t^2 (x - t)  \) Can you find (or show the existence of) r and t such that these two equations are equal? This would show that there is a common normal and hence prove the existence of shortest path. 

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.4"]

Let us write the equations in the slope-intercept form:  \( y = r^2 x   + \frac{1}{r} - r^3 - 1 \\  y = t^2 x  + \frac{1}{t} - t^3 \) Comparing the coefficients we have: \( r^2 = t^2 \) hence r = t or r = -t  We also have $$ \frac {1}{r} - r^3 - 1 = \frac {1}{t} - t^3 $$ Plugging in r = t we get -1 = 0 from second equation which is contradiction.  Plug in r = - t $$ -\frac {1}{t} + t^3 - 1 = \frac {1}{t} - t^3 $$ (Assume t is not 0 (why?)) Simplifying we have  $$ 2t^4 - t - 2 = 0 $$ We want to show that all the roots of this equation are not complex. (If we have a real root, then we get a common normal, hence shortest part; this common normal will not be the longest path because the length of the longest path between these two curves easily goes to infinity). It is enough to show the existence of real roots.  Consider the function \( 2t^4 - t - 2 = h(t) \) Notice that h(0) = -2 < 0 and h(2) > 0  Hence by intermediate value property theorem there is at least one real root between 0 and 2.  Hence we are done. 

[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Watch the video (coming up soon)

[/et_pb_text][et_pb_code _builder_version="3.22.4"][/et_pb_code][et_pb_text _builder_version="4.3.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" hover_enabled="0" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="I.S.I. & C.M.I. Entrance Program" url="https://www.cheenta.com/matholympiad/" image="https://www.cheenta.com/wp-content/uploads/2018/03/ISI.png" _builder_version="3.22.4" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.com/matholympiad/"]

Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are: B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.

The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.

[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/isicmientrance/" button_text="Learn More" button_alignment="center" _builder_version="3.22.4" custom_button="on" button_text_color="#ffffff" button_bg_color="#e02b20" button_border_color="#e02b20" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="4.3.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" hover_enabled="0" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="10" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

One comment on “Shortest distance between curves - I.S.I. Entrance 2019”

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter