Try this beautiful Problem on Algebra based on Set of Fractions from AMC 10 A, 2015. You may use sequential hints to solve the problem.

Set of Fractions – AMC-10A, 2015- Problem 15

Consider the set of all fractions $\frac{x}{y}$, where $x$ and $y$ are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by $1,$ the value of the fraction is increased by $10 \% ?$


  • $0$
  • $1$
  • $2$
  • $3$
  • $infinitely many$

Key Concepts




Suggested Book | Source | Answer

Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2015 Problem-15

Check the answer here, but try the problem first


Try with Hints

First Hint

According to the questation we can write $\frac{x+1}{y+1}=\frac{11 x}{10 y}$

\(\Rightarrow xy +11x-10y=0\)

\(\Rightarrow (x-10)(y-11)=-110\)

Now can you finish the problem?

Second Hint

Here \(x\) and \(y\) must positive, so $x>0$ and $y>0$, so $x-10>-10$ and $y+11>11$

Now we have to find out the factors of \(110\) and find out the possible pairs to fulfill the condition….

Now Can you finish the Problem?

Third Hint

uses the factors of $110$ , we can get the factor pairs: $(-1,110),(-2,55),$ and $(-5,22)$
But we can’t stop here because $x$ and $y$ must be relatively prime.
$(-1,110 )$ gives $x=9$ and $y=99.9$ and 99 are not relatively prime, so this doesn’t work.
$(-2,55 )$ gives $x=8$ and $y=44$. This doesn’t work.
$(-5,22)$ gives $x=5$ and $y=11$. This does work.

Therefore the one solution exist

Subscribe to Cheenta at Youtube