AMC-8 India Math Olympiad Math Olympiad PRMO USA Math Olympiad

Roots of Equations | PRMO-2016 | Problem 8

Try this beautiful problem from Algebra based on quadratic equation from PRMO 2016. You may use sequential hints to solve the problem.

Try this beautiful problem from Algebra based on roots of equations.

Roots of Equations | PRMO | Problem 8

Suppose that \(a\) and \(b\) are real numbers such that \(ab \neq 1\) and the equations \(120 a^2 -120a+1=0\) and \(b^2-120b+120=0\) hold. Find the value of \(\frac{1+b+ab}{a}\)

  • $200$
  • $240$
  • $300$

Key Concepts


quadratic equation


Check the Answer


PRMO-2016, Problem 8

Pre College Mathematics

Try with Hints

The given equations are \(120 a^2 -120a+1=0\) and \(b^2-120b+120=0\).we have to find out the values of \(a\) and \(b\)….

Let \(x,y\) be the roots of the equation \(120 a^2 -120a+1=0\)then \(\frac{1}{x},\frac{1}{y}\) be the roots of the equations of \(b^2-120b+120=0\).can you find out the value of \(a\) & \(b\)

Can you now finish the problem ……….

From two equations after sim[lificatiopn we get…\(a=x\) and \(b=\frac{1}{y}\) (as \(ab \neq 1)\)

Can you finish the problem……..

\(\frac{1+b+ab}{a}\)=\(\frac { 1+\frac{1}{y} +\frac{x}{y}}{x}\)=\(\frac{(x+y)+1}{xy}=240\)

Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.