How Cheenta works to ensure student success?

Explore the Back-Story- Let $ABC$ be a triangle. Let $D, E, F$ be points respectively on the segments $BC, CA, AB$ such that $AD, BE, CF$ concur at the point $K$. Suppose $\frac{BD}{DC} = \frac{BF}{FA}$ and $∠ADB = ∠AFC$. Prove that $∠ ABE = ∠ CAD$.
- Let $ (a_1a_2a_3.....a_{2011}) $ be a permutation (that is arrangement) of the numbers $1, 2, 3 . . . , 2011$. Show that there exist two numbers $j, k$. such that $ 1 \le j < k \le 2011 $ and $ |a_{j}-j|=|a_{k}-k| $.
- A natural number $n$ is chosen strictly between two consecutive perfect square. The smaller of these two squares is obtained by subtracting $k$ from $n$ and the larger one is obtained by adding $l$ to $n$. Prove that $ n-kl $ is a perfect square.
- Consider a $20$-sided convex polygon K, with vertice $ A_1,A_2,....,A_{20} $ in that order. Find the number of ways in which three sides of $K$ can be chosen so that every pair among them has at least two sides of $K$ between them. (For example $ A_1A_2, A_4A_5, A_{11}A_{12} $ is an admissible triple while $ A_1A_2, A_4A_5, A_{19}A_{20} $ is not).
- Let ABC be a triangle and let $ BB_1,CC_1 $ be respectively the bisectors of ∠ B, ∠ C with $ B_1 $ on AC and $ C_1 $ on AB. Let E, F be the feet of perpendiculars drawn from A onto $ BB_1,CC_1 $ respectively. Suppose $D$ is the point at which the in circle of $ABC$ touches $AB$. Prove that $AD = EF$.
- Find all pairs $(x, y)$ of real numbers such that $ 16^{x^2+y}+16^{x+y^2}=1 $.

RMO 2002 Problem 2 – Fermat’s Last Theorem as a guessing tool– Video

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More