Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

RMO 2011 Problem 1 | Angles of a triangle

This is a problem from Regional Mathematics Olympiad, RMO 2011 Problem 1 based on the angles of a triangle. Try it out!

Problem: RMO 2011 Problem 1

Let ABC be a triangle. Let D, E, F be points respectively on the segments BC, CA, AB such that AD, BE, CF concur at the point K. Suppose BD/DC = BF/FA and \angle ADB = \angle AFC . Prove that \angle ABE = \angle CAD .

Solution:

Regional Math Olympiad 2011

FKBD is a cyclic quadrilateral since opposite exterior angle (\angle CFA ) is equivalent to its interior opposite angle (\angle BDA ). Since FKBD is cyclic, its vertices lie on a circle and therefore FK is a segment of the circle. Angles on the same side of a segment of a circle are equal. Therefore, {\angle KBF} = \angle FDK .

So, we need to prove that {\angle FDK} = \angle DAC

In a triangle say PQR, let D and E be points on QP and QR respectively. DE is parallel to PR iff QD/DP=QE/ER.In triangle ABC, BD/DC=BF/FA

Therefore FD is parallel to AC. Since angle FDK and angle DAC are alternative interior opposite angles when FD is parallel to AC and AD is the transversal.

Therefore {\angle KBF} = \angle FDK = \angle DAC .

Hence proved {\angle KBF} = \angle DAC

Some Useful Links:

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com