INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More

This is a problem from Regional Mathematics Olympiad, RMO 2011 Problem 1 based on the angles of a triangle. Try it out!

**Problem: RMO 2011 Problem 1**

Let ABC be a triangle. Let D, E, F be points respectively on the segments BC, CA, AB such that AD, BE, CF concur at the point K. Suppose BD/DC = BF/FA and . Prove that .

**Solution:**

FKBD is a cyclic quadrilateral since opposite exterior angle is equivalent to its interior opposite angle . Since FKBD is cyclic, its vertices lie on a circle and therefore FK is a segment of the circle. Angles on the same side of a segment of a circle are equal. Therefore, = .

So, we need to prove that =

In a triangle say PQR, let D and E be points on QP and QR respectively. DE is parallel to PR iff QD/DP=QE/ER.In triangle ABC, BD/DC=BF/FA

Therefore FD is parallel to AC. Since angle FDK and angle DAC are alternative interior opposite angles when FD is parallel to AC and AD is the transversal.

Therefore = = .

Hence proved =

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google