How Cheenta works to ensure student success?

Explore the Back-StoryProblems and Solutions from CMI Entrance 2022. Learn More

In this post, there are problems from Regional Mathematics Olympiad, RMO 2010. Try out these problems.

- Let $ABCDEF$ be a convex hexagon in which the diagonals $AD, BE, CF$ are concurrent at $O$. Suppose the area of triangle $OAF$ is the geometric mean of those of $OAB$ and $OEF$; and the area of the triangle $OBC$ is the geometric mean of those of $OAB$ and $OCD$. Prove that the area of triangle $OED$ is the geometric mean of those of $OCD$ and $OEF$.
- Let $ P_1(x)=ax^2-bx-c $ , $ P_2(x)=bx^2-cx-a $, $ P_3(x)=cx^2-ax-b $ be three quadratic polynomials where $a, b, c$ are non-zero real numbers. Suppose there exits a real number $ \alpha $such that $ P_1(\alpha)=P_2(\alpha)=P_3(\alpha) $. Prove that $a=b=c$.
- Find the number of $4$-digit numbers (in base $10$) having non-zero digits and which are divisible by $4$ but not by $8$.
- Find three distinct positive integers with the least possible sum such that the sum of the reciprocals of any two integers among them is an integral multiple of the reciprocal of the third integer.
- Let ABC be a triangle in which $∠A = 60^{\circ}$ Let $BE$ and $CF$ be the bisectors of the angles $B$ and $C$ with $E$ on $AC$ and $F$ on $AB$. Let $M$ be the reflection of $A$ in the line $EF$. Prove that $M$ lies on $BC$.
- For each integer 1 ≤ n, define $ a_n=\frac{n}{\sqrt{n}}] $ where [x] denotes the largest integer not exceeding x, for any real numbers x. Find the number of all n in the set ${1, 2, 3……, 2010}$ for which $ a_n > a_{n+1} $.

RMO 2002 Problem 2 – Fermat’s Last Theorem as a guessing tool– Video

In this post, there are problems from Regional Mathematics Olympiad, RMO 2010. Try out these problems.

- Let $ABCDEF$ be a convex hexagon in which the diagonals $AD, BE, CF$ are concurrent at $O$. Suppose the area of triangle $OAF$ is the geometric mean of those of $OAB$ and $OEF$; and the area of the triangle $OBC$ is the geometric mean of those of $OAB$ and $OCD$. Prove that the area of triangle $OED$ is the geometric mean of those of $OCD$ and $OEF$.
- Let $ P_1(x)=ax^2-bx-c $ , $ P_2(x)=bx^2-cx-a $, $ P_3(x)=cx^2-ax-b $ be three quadratic polynomials where $a, b, c$ are non-zero real numbers. Suppose there exits a real number $ \alpha $such that $ P_1(\alpha)=P_2(\alpha)=P_3(\alpha) $. Prove that $a=b=c$.
- Find the number of $4$-digit numbers (in base $10$) having non-zero digits and which are divisible by $4$ but not by $8$.
- Find three distinct positive integers with the least possible sum such that the sum of the reciprocals of any two integers among them is an integral multiple of the reciprocal of the third integer.
- Let ABC be a triangle in which $∠A = 60^{\circ}$ Let $BE$ and $CF$ be the bisectors of the angles $B$ and $C$ with $E$ on $AC$ and $F$ on $AB$. Let $M$ be the reflection of $A$ in the line $EF$. Prove that $M$ lies on $BC$.
- For each integer 1 ≤ n, define $ a_n=\frac{n}{\sqrt{n}}] $ where [x] denotes the largest integer not exceeding x, for any real numbers x. Find the number of all n in the set ${1, 2, 3……, 2010}$ for which $ a_n > a_{n+1} $.

RMO 2002 Problem 2 – Fermat’s Last Theorem as a guessing tool– Video

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google