Categories
AMC 10 Geometry Math Olympiad USA Math Olympiad

Right-angled Triangle | AMC 10A, 2018 | Problem No 16

Try this beautiful Problem on triangle from AMC 10A, 2018. Problem-16. You may use sequential hints to solve the problem.

Try this beautiful Problem on Geometry based on Right-angled triangle from AMC 10 A, 2018. You may use sequential hints to solve the problem.

Right-angled triangle – AMC-10A, 2018- Problem 16


Right triangle $A B C$ has leg lengths $A B=20$ and $B C=21$. Including $\overline{A B}$ and $\overline{B C}$, how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{A C} ?$

,

  • $5$
  • $8$
  • $12$
  • $13$
  • $15$

Key Concepts


Geometry

Triangle

Pythagoras

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2018 Problem-16

Check the answer here, but try the problem first

\(13\)

Try with Hints


First Hint

Given that \(\triangle ABC\) is a Right-angle triangle and $AB=20$ and $BC=21$. we have to find out how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{AC}$?

Let $P$ be the foot of the altitude from $B$ to $AC$. therefore \(BP\) is the shortest legth . $B P=\frac{20 \cdot 21}{29}$ which is between $14$ and $15$.

Now can you finish the problem?

Second Hint

let us assume a line segment \(BY\) with \(Y\) on \(AC\)which is starts from $A$ to $P$ . So if we move this line segment the length will be decreases and the values will be look like as \(20,…..,15\). similarly if we moving this line segment $Y$ from $P$ to $C$ hits all the integer values from $15, 16, \dots, 21$.

Now Can you finish the Problem?

Third Hint

Therefore numbers of total line segments will be \(13\)

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.