Try this beautiful Problem on Geometry based on Right-angled triangle from AMC 10 A, 2018. You may use sequential hints to solve the problem.
Right triangle $A B C$ has leg lengths $A B=20$ and $B C=21$. Including $\overline{A B}$ and $\overline{B C}$, how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{A C} ?$
,
Geometry
Triangle
Pythagoras
Pre College Mathematics
AMC-10A, 2018 Problem-16
\(13\)
Given that \(\triangle ABC\) is a Right-angle triangle and $AB=20$ and $BC=21$. we have to find out how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{AC}$?
Let $P$ be the foot of the altitude from $B$ to $AC$. therefore \(BP\) is the shortest legth . $B P=\frac{20 \cdot 21}{29}$ which is between $14$ and $15$.
Now can you finish the problem?
let us assume a line segment \(BY\) with \(Y\) on \(AC\)which is starts from $A$ to $P$ . So if we move this line segment the length will be decreases and the values will be look like as \(20,.....,15\). similarly if we moving this line segment $Y$ from $P$ to $C$ hits all the integer values from $15, 16, \dots, 21$.
Now Can you finish the Problem?
Therefore numbers of total line segments will be \(13\)
Try this beautiful Problem on Geometry based on Right-angled triangle from AMC 10 A, 2018. You may use sequential hints to solve the problem.
Right triangle $A B C$ has leg lengths $A B=20$ and $B C=21$. Including $\overline{A B}$ and $\overline{B C}$, how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{A C} ?$
,
Geometry
Triangle
Pythagoras
Pre College Mathematics
AMC-10A, 2018 Problem-16
\(13\)
Given that \(\triangle ABC\) is a Right-angle triangle and $AB=20$ and $BC=21$. we have to find out how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{AC}$?
Let $P$ be the foot of the altitude from $B$ to $AC$. therefore \(BP\) is the shortest legth . $B P=\frac{20 \cdot 21}{29}$ which is between $14$ and $15$.
Now can you finish the problem?
let us assume a line segment \(BY\) with \(Y\) on \(AC\)which is starts from $A$ to $P$ . So if we move this line segment the length will be decreases and the values will be look like as \(20,.....,15\). similarly if we moving this line segment $Y$ from $P$ to $C$ hits all the integer values from $15, 16, \dots, 21$.
Now Can you finish the Problem?
Therefore numbers of total line segments will be \(13\)