How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Right angled triangle | AIME I, 1994 | Question 10

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1994 based on Right angled triangle.

Right angled triangle - AIME I, 1994

In \(\Delta ABC\), \(\angle C\) is a right angle and the altitude from C meets AB at D. The lengths of the sides of \(\Delta ABC\) are integers, \(BD={29}^{3}\), and \(cosB=\frac{m}{n}\), where m, n are relatively prime positive integers, find m+n.

  • is 107
  • is 450
  • is 840
  • cannot be determined from the given information

Key Concepts


Right angled triangle

Pythagoras Theorem

Check the Answer

Answer: is 450.

AIME I, 1994, Question 10

Geometry Vol I to IV by Hall and Stevens

Try with Hints

First hint

\(\Delta ABC \sim \Delta CBD\)


\(\Rightarrow {BC}^{2}=29^{3}AB\)

\(\Rightarrow 29^{2}|BC and 29|AB\)

\(\Rightarrow BC and AB are in form 29^{2}x, 29x^{2}\) where x is integer

Second Hint

\(by Pythagoras Theorem, AC^{2}+BC^{2}=AB^{2}\)

\(\Rightarrow (29^{2}x)^{2}+AC^{2}=(29x^{2})^{2}\)

\(\Rightarrow 29x|AC\)

Final Step

taking y=\(\frac{AC}{29x}\) and dividing by (29x)^{2}\)

\(\Rightarrow 29^{2}=x^{2}-y^{2}=(x-y)(x+y)\)

where x,y are integers, the factors are \((1,29^{2}),(29,29)\)

\(y=\frac{AC}{29x}\) not equals 0 \(\Rightarrow x-y=1, x+y=29\)

\(\Rightarrow x=\frac{1+29^{2}}{2}\)

=421 then\(cosB=\frac{BC}{AB}=\frac{29^{2}x}{29x^{2}}\)=\(\frac{29}{421}\)


Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.