How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Remembering Cauchy-Schwarz | Tomato subjective 33

Problem: Let ( \ k) be a fixed odd positive integer.Find the minimum value of ( \ x^2+y^2),where ( \ x,y) are non-negative integers and ( \ x+y=k).

Solution: According to Cauchy Schwarz's inequality,

we can write, ( \ (x^2+y^2)\times(1^2+1^2) \ge)(\ (x\times1+y\times1)^2)

=>( \ 2(x^2+y^2)\ge)(\ (x+y)^2)

=>( \ x^2+y^2\ge) (\frac{k^2}{2})

Therefore,the minimum value of ( \ x^2+y^2) is (\frac{k^2}{2}).

But it is given that (\ k) is a odd positive integer and (\ x,y \ge 0) so minimum value of  ( \ x^2+y^2) must be (\frac{k^2+1}{2}).

Concepts used:-Cauchy Schwarz's inequality.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.