Categories

# Rectangle Problem | Geometry | PRMO-2017 | Question 13

Try this beautiful Rectangle Problem from Geometry from PRMO 2017, Question 13. You may use sequential hints to solve the problem.

Try this beautiful Rectangle Problem from Geometry, from PRMO 2017.

## Rectangle Problem – Geometry – PRMO 2017, Question 13

In a rectangle $A B C D, E$ is the midpoint of $A B ; F$ is a point on $A C$ such that $B F$ is perpendicular to $A C$; and FE perpendicular to BD. Suppose $\mathrm{BC}=8 \sqrt{3}$. Find AB.

• $9$
• $24$
• $11$

### Key Concepts

Geometry

Triangle

Trigonometry

But try the problem first…

Answer:$24$

Source

PRMO-2017, Problem 13

Pre College Mathematics

## Try with Hints

First hint

We have to find out the value of $$AB$$. Join $$BD$$. $$BF$$ is perpendicular on $$AC$$.

Let $\angle \mathrm{BAC}=\theta$
since $\mathrm{E}$ is mid point of hypotenous $\mathrm{AB}$ of right $\Delta \mathrm{AFB}$, therefore $A E=F E=B E$

Can you now finish the problem ……….

Second Hint

Therefore

Therefore$\angle E F A=\angle F A E=\theta$
and $\angle \mathrm{FEB}=\angle \mathrm{EAF}+\angle \mathrm{EFA}=2 \theta$
$\Rightarrow \angle E B D=90^{\circ}-\angle B E F=90^{\circ}-2 \theta$
But $\angle \mathrm{FAE}=\angle \mathrm{CAB}=\angle \mathrm{DBA}$
Therefore $\theta=90^{\circ}-2 \theta \Rightarrow \theta=30^{\circ}$
Therefore in $\Delta \mathrm{ABC}, \tan \theta=\frac{\mathrm{BC}}{\mathrm{AB}}$

Can you finish the problem……..

Final Step

Therefore $A B=B C \cot \theta=8 \sqrt{3} \cot 30^{\circ}=24$

## Subscribe to Cheenta at Youtube

This site uses Akismet to reduce spam. Learn how your comment data is processed.