Understand the problem

Find the 3-digit number whose ratio with the sum of its digits is minimal.

Source of the problem

Albania TST 2013

Topic
Number Theory, Inequalities.
Difficulty Level
Easy
Suggested Book
Problem Solving Strategies by Arthur Engel

Start with hints

Do you really need a hint? Try it first!

Suppose that the number is (abc)_{10}. Then we would like to minimise \frac{100a+10b+c}{a+b+c}. Try to minimise for one variable at a time.
Note that, \frac{100a+10b+c}{a+b+c}=1+\frac{9(11a+b)}{a+b+c}. In this expression, it is possible to minimise for c independent of a,b.
From the previous hint, the expression is minimised for c=9. Show that the ratio can now be rewritten as 1+\frac{10a-9}{a+b+9}. Minimise for $b$.
In the previous hint we see that the minimising value of b is also 9. Finally, the ratio may be written as 10-\frac{189}{a+18}. This is minimised for a=1. Hence the answer is 199.

Watch the video (Coming Soon)

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Functional Equation Problem from SMO, 2018 – Question 35

Try this problem from Singapore Mathematics Olympiad, SMO, 2018 based on Functional Equation. You may use sequential hints if required.

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.

Cubic Equation | AMC-10A, 2010 | Problem 21

Try this beautiful problem from Algebra, based on the Cubic Equation problem from AMC-10A, 2010. You may use sequential hints to solve the problem.

Median of numbers | AMC-10A, 2020 | Problem 11

Try this beautiful problem from Geometry based on Median of numbers from AMC 10A, 2020. You may use sequential hints to solve the problem.

LCM and Integers | AIME I, 1998 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1998, Problem 1, based on LCM and Integers.

Problem on Fraction | AMC 10A, 2015 | Question 15

Try this beautiful Problem on Fraction from Algebra from AMC 10A, 2015. You may use sequential hints to solve the problem.