Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Quadratic equation | ISI-B.stat | Objective Problem 240

Try this beautiful problem based on Quadratic equation, useful for ISI B.Stat Entrance.

Quadratic equation | ISI B.Stat Entrance | Problem 240


The equations \(x^2 + x + a = 0\) and \(x^2 + ax + 1 = 0\)

  • (a) cannot have a common real root for any value of a
  • (b) have a common real root for exactly one value of a
  • (c) have a common root for exactly two values of a
  • (d) have a common root for exactly three values of a.

Key Concepts


Algebra

Quadratic equation

Roots

Check the Answer


Answer: (b)

TOMATO, Problem 240

Challenges and Thrills in Pre College Mathematics

Try with Hints


Let the equations have a common root \(α\).Therefore \(α\) must satisfy two given equations.......

Therefore,

Now, \(α^2 + α + a = 0\)...................(1)
And, \(α^2 + aα + 1 = 0\).......................(2)

Can you find out the value of \(a\)?

Can you now finish the problem ..........

Therefore,

Using cross-multiplication betwwen (1) & (2) we will get.......

\(\frac{α^2}{(1 – a^2)} =\frac{ α}{(a – 1)} = \frac{1}{(a – 1)}\)
\(\Rightarrow {α}^2 = \frac{(1 – a^2)}{(a – 1) }=- (a + 1)\) & \(α=\frac{(a-1)}{(a-1)}=1\)

Now \({α}^2=(α)^2\)
\(\Rightarrow -(a+1)=1\)
\(\Rightarrow a = -2\)

Therefore (b) is the correct answer....

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com