How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

# Problem on Calculus | ISI-B.stat | Objective Problem 696

Try this beautiful problem on Calculus, useful for ISI B.Stat Entrance.

## Problem on Calculus | ISI B.Stat Entrance | Problem 696

If k is an integer such that lim $\{{cos}^n(k\pi/4) – {cos}^n(k\pi/6)\} = 0$,
then

• (a) k is divisible neither by 4 nor by 6
• (b) k must be divisible by 12, but not necessarily by 24
• (c) k must be divisible by 24
• (d) either k is divisible by 24 or k is divisible neither by 4 not by 6

Calculus

Limit

Trigonometry

## Check the Answer

Answer: (d)

TOMATO, Problem 694

Challenges and Thrills in Pre College Mathematics

## Try with Hints

There are four options ,at first we have to check each options.....

If k is divisible by 24 then cos(kπ/4) = cos(kπ/6) = 1
$\Rightarrow$ The limit exists and equal to RHS i.e. 0
If k is not divisible by 4 or 6 then cos(kπ/4), cos(kπ/6) both <1

Can you now finish the problem ..........

Therefore ,

lim cosn(kπ/4), cosn(kπ/6) = 0. so we may say that
$\Rightarrow$The equation holds.

# Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

### Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
HALL OF FAMESUPER STARSBOSE OLYMPIADBLOG
CAREERTEAM
support@cheenta.com