What are we learning ?

Competency in Focus: Concept of Probability

This problem from American Mathematics Contest 8 (AMC 8, 2018) is based on calculation of probability. It is Question number 11 of the AMC 8 2018 Problem series.

First look at the knowledge graph:-

calculation of  mean and median- AMC 8 2013 Problem

Next understand the problem

Abby, Bridget, and four of their classmates will be seated in two rows of three for a group picture, as shown. If the seating positions are assigned randomly, what is the probability that Abby and Bridget are adjacent to each other in the same row or the same column? $\textbf{(A) } \frac{1}{3} \qquad \textbf{(B) } \frac{2}{5} \qquad \textbf{(C) } \frac{7}{15} \qquad \textbf{(D) } \frac{1}{2} \qquad \textbf{(E) } \frac{2}{3}$  
Source of the problem

American Mathematical Contest 2018, AMC 8 Problem 11

Key Competency

Basic Probability sum 

Difficulty Level
6/10
Suggested Book
Challenges and Thrills in Pre College Mathematics Excursion Of Mathematics 

Start with hints 

Do you really need a hint? Try it first!
If you need any hint try from this: There are a total of $6!$ ways to arrange the kids.
Abby and Bridget can sit in 3 ways if they are adjacent in the same column: For each of these seat positions, Abby and Bridget can switch seats, and the other 4 people can be arranged in $4!$ ways which results in a total of $3 \times 2 \times 4!$ ways to arrange them.
By the same logic, there are 4 ways for Abby and Bridget to placed if they are adjacent in the same row, they can swap seats, and the other $4$ people can be arranged in $4!$ ways, for a total of $4 \times 2 \times 4!$ ways to arrange them.
We sum the 2 possibilities up to get $\frac{(3\cdot2)\cdot4!+(4\cdot2)\cdot4!}{6!} = \frac{14\cdot4!}{6!}=\boxed{\frac{7}{15}}$

AMC - AIME Program

AMC - AIME - USAMO Boot Camp for brilliant students. Use our exclusive one-on-one plus group class system to prepare for Math Olympiad

Learn More

Angles of Star | AMC 8, 2000 | Problem 24

Try this beautiful problem from GeometryAMC-8, 2000 ,Problem-24, based triangle. You may use sequential hints to solve the problem.

Problem based on Integer | PRMO-2018 | Problem 6

Try this beautiful problem from Algebra based on Quadratic equation from PRMO 8, 2018. You may use sequential hints to solve the problem.

Number counting | ISI-B.stat Entrance | Objective from TOMATO

Try this beautiful problem Based on Number counting .You may use sequential hints to solve the problem.

Area of a Triangle | AMC-8, 2000 | Problem 25

Try this beautiful problem from Geometry: Area of the triangle from AMC-8, 2000, Problem-25. You may use sequential hints to solve the problem.

Unit digit | Algebra | AMC 8, 2014 | Problem 22

Try this beautiful problem from Algebra about unit digit from AMC-8, 2014. You may use sequential hints to solve the problem.

Mixture | Algebra | AMC 8, 2002 | Problem 24

Try this beautiful problem from Algebra based on mixture from AMC-8, 2002.. You may use sequential hints to solve the problem.

Trapezium | Geometry | PRMO-2018 | Problem 5

Try this beautiful problem from Geometry based on Trapezium from PRMO , 2018. You may use sequential hints to solve the problem.

Probability Problem | AMC 8, 2016 | Problem no. 21

Try this beautiful problem from Probability from AMC-8, 2016 Problem 21. You may use sequential hints to solve the problem.

Pattern Problem| AMC 8, 2002| Problem 23

Try this beautiful problem from Pattern from AMC-8(2002) problem no 23.You may use sequential hints to solve the problem.

Quadratic Equation Problem | PRMO-2018 | Problem 9

Try this beautiful problem from Algebra based on Quadratic equation from PRMO 8, 2018. You may use sequential hints to solve the problem.