Cheenta

Academy for Gifted Students

How Cheenta works to ensure student success?

Explore the Back-StoryIf three prime numbers, all greater than $3$, are in A.P. , then their common difference

(A) must be divisible by $2$ but not necessarily by $3$;

(B) must be divisible by $3$ but not necessarily by $2$;

(C) must be divisible by both $2$ and $3$;

(D) need not be divisible by any of $2$ and $3$;

**Discussion:**

Say $p, p+d$ and $p+2d$ are the three primes in A.P. with d as the common difference.

Since $p>3$, hence $p$ is odd.

If $d$ is odd, then $p+d$ is even. But then $p+d$ cannot be a prime any more. Hence contradiction. Thus $d$ cannot be odd. Hence $2$ divides $d$.

Again $p> 3$ implies $p$ is not divisible by $3$. Hence p is either $1$ or $2$ modulo $3$. Now we wish to check if d is divisible by $3$ or not. Suppose it is not then d is also either $1$ or $2$ modulo $3$.

**Case 1:** $p$ is $1$ mod $3$ and $d$ is $1$ mod $3$, then $p+2d$ is $0$ mod $3$ hence contradiction (as p+2d is a prime greater than 3).

**Case 2:** $p$ is $1$ mod $3$ and $d$ is $2$ mod $3$, then $p+d$ is $0$ mod $3$ hence contradiction (as p+d is a prime greater than 3)

**Case 1:** $p$ is $2$ mod $3$ and $d$ is $1$ mod $3$, then $p+d$ is $0$ mod $3$ hence contradiction (as p+d is a prime greater than 3).

**Case 2:** $p$ is $2$ mod $3$ and $d$ is $2$ mod $3$, then $p+2d$ is $0$ mod $3$ hence contradiction (as p+2d is a prime greater than 3)

Hence $d$ must be $0$ modulo $3$.

Therefore common difference must be divisible by both $2$ and $3$.

**Answer: (C)**

If three prime numbers, all greater than $3$, are in A.P. , then their common difference

(A) must be divisible by $2$ but not necessarily by $3$;

(B) must be divisible by $3$ but not necessarily by $2$;

(C) must be divisible by both $2$ and $3$;

(D) need not be divisible by any of $2$ and $3$;

**Discussion:**

Say $p, p+d$ and $p+2d$ are the three primes in A.P. with d as the common difference.

Since $p>3$, hence $p$ is odd.

If $d$ is odd, then $p+d$ is even. But then $p+d$ cannot be a prime any more. Hence contradiction. Thus $d$ cannot be odd. Hence $2$ divides $d$.

Again $p> 3$ implies $p$ is not divisible by $3$. Hence p is either $1$ or $2$ modulo $3$. Now we wish to check if d is divisible by $3$ or not. Suppose it is not then d is also either $1$ or $2$ modulo $3$.

**Case 1:** $p$ is $1$ mod $3$ and $d$ is $1$ mod $3$, then $p+2d$ is $0$ mod $3$ hence contradiction (as p+2d is a prime greater than 3).

**Case 2:** $p$ is $1$ mod $3$ and $d$ is $2$ mod $3$, then $p+d$ is $0$ mod $3$ hence contradiction (as p+d is a prime greater than 3)

**Case 1:** $p$ is $2$ mod $3$ and $d$ is $1$ mod $3$, then $p+d$ is $0$ mod $3$ hence contradiction (as p+d is a prime greater than 3).

**Case 2:** $p$ is $2$ mod $3$ and $d$ is $2$ mod $3$, then $p+2d$ is $0$ mod $3$ hence contradiction (as p+2d is a prime greater than 3)

Hence $d$ must be $0$ modulo $3$.

Therefore common difference must be divisible by both $2$ and $3$.

**Answer: (C)**

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More