Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Positive solution | AIME I, 1990 | Question 4

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1990 based on positive solution.

Positive solution - AIME I, 1990


Find the positive solution to

\(\frac{1}{x^{2}-10x-29}+\frac{1}{x^{2}-10x-45}-\frac{2}{x^{2}-10x-69}=0\)

  • is 107
  • is 13
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Divisibility

Algebra

Check the Answer


Answer: is 13.

AIME I, 1990, Question 4

Elementary Algebra by Hall and Knight

Try with Hints


First hint

here we put \(x^{2}-10x-29=p\)

\(\frac{1}{p}+\frac{1}{p-16}-\frac{2}{p-40}=0\)

Second Hint

or, (p-16)(p-40)+p(p-40)-2p(p-16)=0

or, -64p+(40)(16)=0

or, p=10

Final Step

or, 10=\(x^{2}-10x-29\)

or, (x-13)(x+3)=0

or, x=13 positive solution.

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com