 INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More

# Polynomial Functional Equation - Random Olympiad Problem

[et_pb_section fb_built="1" _builder_version="3.22.4" fb_built="1" _i="0" _address="0"][et_pb_row _builder_version="3.25" _i="0" _address="0.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||" _i="0" _address="0.0.0"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" _i="0" _address="0.0.0.0"]

# Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2" _i="1" _address="0.0.0.1"]Find all the real Polynomials P(x) such that it satisfies the functional equation: $P(2P(x)) = 2P(P(x)) + P(x)^{2} \forall real x$.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" _i="1" _address="0.1"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||" _i="0" _address="0.1.0"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.22.4" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" _i="0" _address="0.1.0.0"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="3.29.2" _i="0" _address="0.1.0.0.0"]

Unknown [/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="3.29.2" _i="1" _address="0.1.0.0.1" open="off"]Functional Equation, Polynomials[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.29.2" _i="2" _address="0.1.0.0.2" open="off"]7/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="3.29.2" _i="3" _address="0.1.0.0.3" open="off"]Excursion in Mathematics  Challenges and Thrills in Pre College Mathematics[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" _i="1" _address="0.1.0.1"]

# Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.29.2" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" hover_enabled="0" _i="2" _address="0.1.0.2"][et_pb_tab title="Hint 0" _builder_version="3.22.4" _i="0" _address="0.1.0.2.0"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.29.2" _i="1" _address="0.1.0.2.1"]Well, it is really good that the information polynomial is given! You should use that. What is the first thing that you check in a Polynomial Identity? Degree! Yes, check whether the degree of the Polynomial on both the LHS and RHS are the same or not. Yes, they are both the same $n^2$.  But did you observe something fishy?  [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.29.2" _i="2" _address="0.1.0.2.2"]Now rewrite the equation as $P(2P(x)) - 2P(P(x)) = P(x)^{2}$. Do the Degree trick now... You see it right? Yes, on the left it is $n^2$ and on the RHS it is $2n$. So, there are two cases now... Figure them out!

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.29.2" _i="3" _address="0.1.0.2.3"]

Case 1: $2n = n^2$... i.e. P(x) is either a quadratic or a constant function. Case 2: $P(2P(x)) - 2P(P(x))$ has coefficient zero till $x^2n$. We will study case 1 now. Case 1: $2n = n^2$... i.e. P(x) is either a quadratic or a constant function. $P(2P(x)) - 2P(P(x)) = P(x)^{2}$ = $P(2y) - 2P(y) = y^{2}$ where $y = P(x)$. Now, expand using $P(x) = ax^2 + bx +c$, it gives $2ay^2 -c = y^2$... Now find out all such polynomials satisfying this property. For e.g. $\frac{x^2}{2}$ is a solution. If P(x) is constant, prove that $P(x) = 0 / \frac{-1}{2}$.  [/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.29.2" _i="4" _address="0.1.0.2.4"]Case 2: $P(2y) - 2P(y) = y^{2}$. Assume a general form of P(x) = $latex$and show that P(x) must be quadratic or lesser degree by comparing coefficients as you have a quadratic on RHS and n degree polynomial of the LHS.  Now, we have already solved it for quadratic or less degree.  [/et_pb_tab][et_pb_tab title="Techniques Revisited" _builder_version="3.29.2" _i="5" _address="0.1.0.2.5"]

• Always Compare the Degree of Polynomials in identities like this. It provides a lot of information.
• Compare the coefficients of Polynomials on both sides to equalize the coefficient on both sides.
[/et_pb_tab][et_pb_tab title="Food for Thought" _builder_version="3.29.2" hover_enabled="0" _i="6" _address="0.1.0.2.6"]
• Find all polynomials $P(2P(x)) - 8P(P(x)) = P(x)^{2}$.
• Find all polynomials $P(cP(x)) - d P(P(x)) = P(x)^{2}$ depending on the values of c and d.
[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" _i="3" _address="0.1.0.3"]

# Watch video

[/et_pb_text][et_pb_code _builder_version="3.26.4" _i="4" _address="0.1.0.4"]https://apis.google.com/js/platform.js
[/et_pb_code][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" _i="5" _address="0.1.0.5"]

# Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Math Olympiad Program" url="https://www.cheenta.com/matholympiad/" url_new_window="on" image="https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.com/matholympiad/" link_option_url_new_window="on" _i="6" _address="0.1.0.6"]

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/matholympiad/" url_new_window="on" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3" _i="7" _address="0.1.0.7"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" _i="8" _address="0.1.0.8"]

# Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4" _i="9" _address="0.1.0.9"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3" _i="10" _address="0.1.0.10"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
HALL OF FAMESUPER STARSBOSE OLYMPIADBLOG
CAREERTEAM
support@cheenta.com