How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Partial Differentiation | IIT JAM 2017 | Problem 5

Try this problem from IIT JAM 2017 exam (Problem 5) based on Partial Differentiation. It deals with calculating the partial derivative of a multi-variable function.

Partial Differentiation | IIT JAM 2017 | Problem 5

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. If $g(u, v)=f\left(u^{2}-v^{2}\right),$ then
$\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial v^{2}}=$

  • $4\left(u^{2}-v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$
  • $4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$
  • $2 f^{\prime}\left(u^{2}-v^{2}\right)+4\left(u^{2}-v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$
  • $2(u-v)^{2} f^{\prime \prime}\left(u^{2}-v^{2}\right)$

Key Concepts

Real Analysis

Function of Multi-variable

Partial Differentiation

Check the Answer

Answer: $4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$

IIT JAM 2017, Problem 5

Real Analysis : Robert G. Bartle

Try with Hints

Here $g$ is a function of $u$ and $v$, to calculate $\frac{\partial g}{\partial u}$ we will differentiate the function $g$ with respect to $u$ keeping $v$ as constant.

and to calculate $\frac{\partial g}{\partial v}$ we will differentiate the function $g$ with respect to $v$ keeping $u$ as constant.

and $\frac{\partial^2 g}{\partial u^2}= \frac{\partial }{\partial u} [ \frac{\partial g}{\partial u} ]$

Hmm... I think you can easily do it from here ........

$\begin{aligned}\frac{\partial^{2} g}{\partial u^{2}}=\frac{\partial}{\partial u}\left(\frac{\partial u}{\partial u}\right) &=\frac{\partial}{\partial u}\left[f^{\prime}\left(v^{2}-v^{2}\right) \cdot 2 u\right] \\&=2 u \cdot f^{\prime \prime}\left(v^{2}-v^{2}\right) \cdot 2 u+f^{\prime}\left(v^{2}-v^{2}\right) \cdot 2 \\&=4 u^{2} f^{\prime \prime}\left(v^{2}-v^{2}\right)+2 f^{\prime}\left(v^{2}-v^{2}\right)\ldots\ldots(i)\end{aligned}$


$\begin{aligned}\frac{\partial^{2} g}{\partial v^{2}}=\frac{\partial}{\partial v}\left(\frac{\partial g}{\partial v}\right) &=\frac{\partial}{\partial v}\left[f^{\prime}\left(v^{2}-v^{2}\right) \cdot (-2 v)\right] \\&=(-2 v) \cdot f^{\prime \prime}\left(v^{2}-v^{2}\right) \cdot (-2 v)+f^{\prime}\left(v^{2}-v^{2}\right) \cdot (-2) \\&=(4 v^{2}) f^{\prime \prime}\left(v^{2}-v^{2}\right)-2 f^{\prime}\left(v^{2}-v^{2}\right) \ldots\ldots(ii) \end{aligned}$

Adding $(i)$ and (ii) we get,

$\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial x^{2}}$

$=4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)+2 f^{\prime}\left(u^{2}-v^{2}\right)-2 f^{\prime}\left(u^{2}-v^{2}\right)$

$=4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right) \textbf{[Ans]}$

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.