How Cheenta works to ensure student success?
Explore the Back-Story

Numbers of positive integers | AIME I, 2012 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME 2012 based on Numbers of positive integers.

Numbers of positive integers - AIME 2012


Find the number of positive integers with three not necessarily distinct digits, \(abc\), with \(a \neq 0\) and \(c \neq 0\) such that both \(abc\) and \(cba\) are multiples of \(4\).

  • is 107
  • is 40
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Number Theory

Algebra

Check the Answer


Answer: is 40.

AIME, 2012, Question 1.

Elementary Number Theory by David Burton .

Try with Hints


Here a number divisible by 4 if a units with tens place digit is divisible by 4

Then case 1 for 10b+a and for 10b+c gives 0(mod4) with a pair of a and c for every b

[ since abc and cba divisible by 4 only when the last two digits is divisible by 4 that is 10b+c and 10b+a is divisible by 4]

and case II 2(mod4) with a pair of a and c for every b

Then combining both cases we get for every b gives a pair of a s and a pair of c s

So for 10 b's with 2 a's and 2 c's for every b gives \(10 \times 2 \times 2\)

Then number of ways \(10 \times 2 \times 2\) = 40 ways.

Subscribe to Cheenta at Youtube


Try this beautiful problem from the American Invitational Mathematics Examination, AIME 2012 based on Numbers of positive integers.

Numbers of positive integers - AIME 2012


Find the number of positive integers with three not necessarily distinct digits, \(abc\), with \(a \neq 0\) and \(c \neq 0\) such that both \(abc\) and \(cba\) are multiples of \(4\).

  • is 107
  • is 40
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Number Theory

Algebra

Check the Answer


Answer: is 40.

AIME, 2012, Question 1.

Elementary Number Theory by David Burton .

Try with Hints


Here a number divisible by 4 if a units with tens place digit is divisible by 4

Then case 1 for 10b+a and for 10b+c gives 0(mod4) with a pair of a and c for every b

[ since abc and cba divisible by 4 only when the last two digits is divisible by 4 that is 10b+c and 10b+a is divisible by 4]

and case II 2(mod4) with a pair of a and c for every b

Then combining both cases we get for every b gives a pair of a s and a pair of c s

So for 10 b's with 2 a's and 2 c's for every b gives \(10 \times 2 \times 2\)

Then number of ways \(10 \times 2 \times 2\) = 40 ways.

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
Math Olympiad Program
magic-wandrockethighlight