Understand the problem

A sequence of natural numbers is constructed by listing the first $4$, then skipping one, listing the next $5$, skipping $2$, listing $6$, skipping $3$, and, on the $n$th iteration, listing $n+3$ and skipping $n$. The sequence begins $1,2,3,4,6,7,8,9,10,13$. What is the $500,\!000$th number in the sequence ? 

Source of the problem
American Mathematics Competition 
Topic

Number Theory, Sequences

Difficulty Level

7/10

Suggested Book
Challenges and Thrills of Pre-College Mathematics

Start with hints

You could give it a thought first…are you sure you really need a hint ?

Stuck…? Well, don’t worry. The key to solving this problem is not thinking too much about the skips. We can start with natural numbers, from 1 to 500,000. So, a useful strategy could be to find how many numbers we have actually skipped, n and then add them back accordingly.  So, now could you take things on from here ?  

If you’re a tad bit doubtful of where we’re heading even now, well no problem. Clearly, we can say 999.(1000) / 2   < 500,000 < 1000.(1001) / 2 So, now can you find out how many blocks of gaps we have in the sequence ?    

Now see, finding the blocks of gaps easy ! There’s just one small thing you would have to recall. We began the count from 4…so now, the number of skipped blocks in the sequence = 999 – 3 = 996.  Now to find n, from the number of blocks , we have =  (996.997) / 2 = 496,506 This stands for the number of numbers we skipped. Now concluding this is fairly easy…could you try that out yourself ?                      

What remains for us to do is to add back those skipped numbers to the count, 500,000 to obtain the final answer. That gives us = 500000 +496506 = 996506

And we are done !

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Roots of Equation and Vieta’s formula | AIME I, 1996 Problem 5

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1996 based on Roots of Equation and Vieta’s formula.

Amplitude and Complex numbers | AIME I, 1996 Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1996 based on Amplitude and Complex numbers.

Tetrahedron Problem | AIME I, 1992 | Question 6

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1992 based on Tetrahedron Problem.

Triangle and integers | AIME I, 1995 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Triangle and integers.

Functional Equation Problem from SMO, 2018 – Question 35

Try this problem from Singapore Mathematics Olympiad, SMO, 2018 based on Functional Equation. You may use sequential hints if required.

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.