Understand the problem

A sequence of natural numbers is constructed by listing the first $4$, then skipping one, listing the next $5$, skipping $2$, listing $6$, skipping $3$, and, on the $n$th iteration, listing $n+3$ and skipping $n$. The sequence begins $1,2,3,4,6,7,8,9,10,13$. What is the $500,\!000$th number in the sequence ? 

Source of the problem
American Mathematics Competition 
Topic

Number Theory, Sequences

Difficulty Level

7/10

Suggested Book
Challenges and Thrills of Pre-College Mathematics

Start with hints

You could give it a thought first…are you sure you really need a hint ?

Stuck…? Well, don’t worry. The key to solving this problem is not thinking too much about the skips. We can start with natural numbers, from 1 to 500,000. So, a useful strategy could be to find how many numbers we have actually skipped, n and then add them back accordingly.  So, now could you take things on from here ?  

If you’re a tad bit doubtful of where we’re heading even now, well no problem. Clearly, we can say 999.(1000) / 2   < 500,000 < 1000.(1001) / 2 So, now can you find out how many blocks of gaps we have in the sequence ?    

Now see, finding the blocks of gaps easy ! There’s just one small thing you would have to recall. We began the count from 4…so now, the number of skipped blocks in the sequence = 999 – 3 = 996.  Now to find n, from the number of blocks , we have =  (996.997) / 2 = 496,506 This stands for the number of numbers we skipped. Now concluding this is fairly easy…could you try that out yourself ?                      

What remains for us to do is to add back those skipped numbers to the count, 500,000 to obtain the final answer. That gives us = 500000 +496506 = 996506

And we are done !

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Pattern Problem| AMC 8, 2002| Problem 23

Try this beautiful problem from Pattern from AMC-8(2002) problem no 23.You may use sequential hints to solve the problem.

Quadratic Equation Problem | PRMO-2018 | Problem 9

Try this beautiful problem from Algebra based on Quadratic equation from PRMO 8, 2018. You may use sequential hints to solve the problem.

Set theory | ISI-B.stat Entrance | Objective from TOMATO

Try this beautiful problem Based on Set Theory .You may use sequential hints to solve the problem.

Arrangement Problem | AIME 2012 | Question 3

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2012 based on Arrangement. You may use sequential hints.

Area of the Trapezoid | AMC 8, 2002 | Problem 20

Try this beautiful problem from AMC-8, 2002, (Problem-20) based on area of Trapezoid.You may use sequential hints to solve the problem.

Problem related to Money | AMC 8, 2002 | Problem 25

Try this beautiful problem from Algebra based on Number theory fro AMC-8(2002) problem no 25.You may use sequential hints to solve the problem.

Divisibility Problem | PRMO 2019 | Question 8

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2015 based on Smallest Perimeter of Triangle.

Area of Trapezoid | AMC 10A, 2018 | Problem 9

Try this beautiful problem from AMC 10A, 2018 based on area of trapezoid. You may use sequential hints to solve the problem.

Problem on Series and Sequences | SMO, 2012 | Problem 23

Try this beautiful problem from Singapore Mathematics Olympiad, 2012 based on Series and Sequences. You may use sequential hints to solve the problem.

Theory of Equations | AIME 2015 | Question 10

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2015 based on Theory of Equations.