Understand the problem

A group of $12$ pirates agree to divide a treasure chest of gold coins among themselves as follows. The $k^{\text{th}}$ pirate to take a share takes $\frac{k}{12}$ of the coins that remain in the chest. The number of coins initially in the chest is the smallest number for which this arrangement will allow each pirate to receive a positive whole number of coins. How many coins does the $12^{\text{th}}$ pirate receive?

Source of the problem
American Mathematics Competition 
Topic

Number Theory

Difficulty Level

7/10

Suggested Book

Elementary Number Theory by David M. Burton

Start with hints

Well, just give the problem a good read. Probably, with a little bit of thought, you can even get this done without a hint ! 

We could start this the traditional way, be assuming the number of coins to be x.  Now, ask yourself after the k’th pirate has taken his share, what is the remanant number of coins ? This is  ( 12-k / 12 ) of what was originally there. [ Why ? Because each pirate takes k/12 of the coins, remember ? ]  Now, could you try taking things up from here…by yourself ?  

 Let’s understand the next thing the problem is trying to focus on. “Each pirate receives a whole number of coins” Now, this should actually help us conclude   x. ( (11.10.9.8.7.6.5.4.3.2.1) / 12 ) is supposed to be an integer. Since this actually implies divisibility.   Cancellation of terms leads us to : x. ( (11.5.1.7.1.5.1.1.1.1) / ( 12.6.2.12.2.12.3.4.6.12 ) )  Can you try and approach the solution by yourself now ?      

 Now, this tells us the intuition of the problem. We make sure that the quotient should be an integer ! Also, recall that the 12’th pirate definitely takes the entirety of what is left, practically unity since it is exactly divisible.                        

So basically, we just realized that the denominator is entirely multiplied out…cancelled !  And since we know that the denominator cancels out, the number of gold coins received by the 12th pirate is just going to be the product of the numerators !!! That evaluates to : 11.5.7.5 = 1925 And that completes our solution !

 

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Roots of Equation and Vieta’s formula | AIME I, 1996 Problem 5

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1996 based on Roots of Equation and Vieta’s formula.

Amplitude and Complex numbers | AIME I, 1996 Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1996 based on Amplitude and Complex numbers.

Tetrahedron Problem | AIME I, 1992 | Question 6

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1992 based on Tetrahedron Problem.

Triangle and integers | AIME I, 1995 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Triangle and integers.

Functional Equation Problem from SMO, 2018 – Question 35

Try this problem from Singapore Mathematics Olympiad, SMO, 2018 based on Functional Equation. You may use sequential hints if required.

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.