Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Minimal value problem | RMO 2015 Chennai Solution

This is a problem from Regional Mathematics Olympiad, RMO 2015 Chennai Region based on the Minimal value problem. Try to solve it.

Problem: Minimal value problem

Find the minimum value of \displaystyle { \frac{ ( x + \frac{1}{x} )^6 - ( x^6 + \frac{1}{x^6}) - 2}{(x+\frac{1}{x})^3 + (x^3 + \frac{1}{x^3} )} } and x \in \mathbf{R}  and x > 0

Discussion:

\displaystyle { \frac{ ( x + \frac{1}{x} )^6 - ( x^6 + \frac{1}{x^6}) - 2}{(x+\frac{1}{x})^3 + (x^3 + \frac{1}{x^3} )} }

= \displaystyle { \frac{ ( x + \frac{1}{x} )^6 - ( (x^3)^2 + (\frac{1}{x^3})^2) - 2}{(x+\frac{1}{x})^3 + (x^3 + \frac{1}{x^3} )} }

= \displaystyle { \frac{ ( x + \frac{1}{x} )^6 - ( (x^3)^2 + (\frac{1}{x^3})^2 + 2)}{(x+\frac{1}{x})^3 + (x^3 + \frac{1}{x^3} )} }

= \displaystyle { \frac{ ( x + \frac{1}{x} )^6 - ( (x^3)^2 + (\frac{1}{x^3})^2 + 2 \times (x^3) \times \frac{1}{x^3})}{(x+\frac{1}{x})^3 + (x^3 + \frac{1}{x^3} )} }

= \displaystyle { \frac{ {( x + \frac{1}{x} )^3}^2 - (x^3 + \frac{1}{x^3})^2}{(x+\frac{1}{x})^3 + (x^3 + \frac{1}{x^3} )} }

= \displaystyle { \frac{ {( x + \frac{1}{x} )^3 + (x^3 + \frac{1}{x^3})} {( x + \frac{1}{x} )^3 - (x^3 + \frac{1}{x^3})}}{(x+\frac{1}{x})^3 + (x^3 + \frac{1}{x^3} )} }

= \displaystyle { ( x + \frac{1}{x} )^3 - (x^3 + \frac{1}{x^3})}

= \displaystyle { 3( x + \frac{1}{x} )}

Applying Arithmetic Mean - Geometric Mean Inequality (since x is positive), we have:

\displaystyle { \frac {( x + \frac{1}{x} )}{2} \ge \sqrt {x\times \frac{1}{x}} = 1 }

\displaystyle { \Rightarrow ( x + \frac{1}{x} ) \ge 2 }

\displaystyle { \Rightarrow 3( x + \frac{1}{x} ) \ge 3\times 2 = 6}

Hence the minimum value is 6.

Chatuspathi:

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com