How Cheenta works to ensure student success?
Explore the Back-Story

Medians of triangle | PRMO-2018 | Problem 10

Join Trial or Access Free Resources

Try this beautiful problem from Geometry based on medians of triangle

Medians of triangle | PRMO | Problem 10

In a triangle ABC, the medians from B to CA is perpendicular to the median from C to AB. If the median from A to BC is 30,determine \((BC^2 +AC^2+AB^2)/100\)?

  • $56$
  • $24$
  • $34$

Key Concepts




Check the Answer


PRMO-2018, Problem 10

Pre College Mathematics

Try with Hints

Medians of triangle ABC

We have to find out \((BC^2 +AC^2+AB^2)/100\). So, we have to find out \(AB, BC, CA\) at first. Now given that, the medians from B to CA is perpendicular to the median from C to AB and the median from A to BC is 30,

So clearly \(\triangle BGC\),\(\triangle BGF\),\(\triangle EGC\) are right angle triangle.Let \(CF=3x\) & \(BE =3y\) then clearly \(CG=2x\) & \(BG= 2y\) given that \(AD=30\) SO \(AG=20\) & \(DG =10\) (as \(G\) is centroid, medians intersects at 2:1). Therefore from pythagoras theorem we can find out \(BC,BF,CE\) i.e we can find out the value \(AB,BC,CA\)

Can you now finish the problem ..........

Triangle ABC with medians

\(CE^2=(2x)^2+y^2=4x^2 +y^2\)


Also, \(CG^2+BG^2=BC^2\) \(\Rightarrow 4x^2 + 4y^2={20}^2\) \(\Rightarrow x^2+y^2=100\)



Can you finish the problem........

\((BC^2 +AC^2+AB^2)=20(x^2+y^2)+20^2=2400\)

so, \((BC^2 +AC^2+AB^2)/100\)=24

Subscribe to Cheenta at Youtube

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

3 comments on “Medians of triangle | PRMO-2018 | Problem 10”

  1. Oh! I got it. Because median of right triangle drawn from the vertex of right angle to the opposite side is half the length of it's hypotenuse.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
Math Olympiad Program