How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Medians | Geometry | PRMO-2018 | Problem 13

Try this beautiful Geometry problem from PRMO, 2018 based on Medians.

Medians | PRMO | Problem-13

In a triangle ABC, right-angled at A, the altitude through A and the internal bisector of \(\angle A \) have lengths \(3\) and \(4\), respectively. Find the length of the median through \(A\).

  • $20$
  • $24$
  • $13$

Key Concepts




Check the Answer


PRMO-2018, Problem 13

Pre College Mathematics

Try with Hints

medians of a triangle

Now in the Right angle Triangle ABC ,\(\angle A=90\).\(AD=3\) is Altitude and \(AE=4\) is the internal Bisector and \(AF\) is the median.Now we have to find out the length of \(AF\)

Now \(\angle CAE = 45^{\circ }= \angle BAE\).

Let\( BC = a\), \(CA = b\), \(AB = c\)
so \(\frac{bc}{2}=\frac{3a}{2}\) \(\Rightarrow bc=3a\)

Can you now finish the problem ..........

a triangle with medians


\(\frac{2bc}{b+c} cos\frac{A}{2}=4\)

\(\Rightarrow \frac{6a}{b+c} .\frac{1}{\sqrt 2}=4\)

\(\Rightarrow 2\sqrt 2 (b+c)=3a\)

\(\Rightarrow 8(b^2 + c^2 + 2bc) = 9a^2\)

\(\Rightarrow 8(a^2 + 6a) = 9a^2\)

\(\Rightarrow 48a=a^2\)

\(\Rightarrow a=48\)

Can you finish the problem........

Now \(AF\) is the median , \(AF=\frac{a}{2}=24\)

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.