Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Measure of Angle | PRMO-2018 | Problem No-29

Try this beautiful Trigonometry Problem based on Measure of Angle from PRMO -2018.

Measure of Angle - PRMO 2018- Problem 29


Let $D$ be an interior point of the side $B C$ of a triangle ABC. Let $l_{1}$ and $l_{2}$ be the incentres of triangles $A B D$ and $A C D$ respectively. Let $A l_{1}$ and $A l_{2}$ meet $B C$ in $E$ and $F$ respectively. If $\angle B l_{1} E=60^{\circ},$ what is the measure of $\angle C l_{2} F$ in degrees?

,

  • \(25\)
  • \(20\)
  • \(35\)
  • \(30\)
  • \(45\)

Key Concepts


Trigonometry

Triangle

Angle

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

Prmo-2018, Problem-29

Check the answer here, but try the problem first

\(30\)

Try with Hints


First Hint

Measure of Angle

According to the questations at first we draw the picture . We have to find out the value of

$\angle C l_{2} F$. Now at first find out \(\angle AED\) and \(\angle AFD\) which are the exterioe angles of \(\triangle BEL_1\) and \(\triangle CL_2F\). Now sum of the angles is $180^{\circ}$

Now can you finish the problem?

Second Hint

$\angle E A D+\angle F A D=\angle E A F=\frac{A}{2}$
$\angle A E D=60^{\circ}+\frac{B}{2}$
$\angle A F D=\theta+\frac{C}{2}$
Therefore $\quad \ln \Delta A E F: \frac{A}{2}+60^{\circ}+\frac{B}{2}+\theta+\frac{C}{2}=180^{\circ}$
$90^{\circ}+60^{\circ}+\theta=180^{\circ}$ (as sum of the angles of a Triangle is $180^{\circ}$
Therefore $\quad \theta=30^{\circ}$

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com