How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Measure of angle | AMC 10A, 2019| Problem No 13

Try this beautiful Problem on Geometry based on Measure of angle from AMC 10 A, 2014. You may use sequential hints to solve the problem.

Measure of angle  - AMC-10A, 2019- Problem 13

Let $\triangle A B C$ be an isosceles triangle with $B C=A C$ and $\angle A C B=40^{\circ} .$ Construct the circle with diameter $\overline{B C}$, and let $D$ and $E$ be the other intersection points of the circle with the sides $\overline{A C}$ and $\overline{A B}$, respectively. Let $F$ be the intersection of the diagonals of the quadrilateral $B C D E .$ What is the degree measure of $\angle B F C ?$


  • $90$
  • $100$
  • $105$
  • $110$
  • $120$

Key Concepts




Suggested Book | Source | Answer

Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2019 Problem-`13

Check the answer here, but try the problem first


Try with Hints

First Hint

According to the questation we draw the diagram. we have to find out \(\angle BFC\)

Now \(\angle BEC\) = \(\angle BDC\) =\(90^{\circ}\) (as they are inscribed in a semicircle)

$\angle A C B=40^{\circ} .$ Therefore we can say that \(\angle ABC=70^{\circ}\) (as $\triangle A B C$ be an isosceles triangle with $B C=A C$)

Can you find out the value of $\angle B F C ?$

Now can you finish the problem?

Second Hint

As \(\angle ABC=70^{\circ}\) and \(\angle BEC=90^{\circ}\) Therefore $\angle E C B=20^{\circ}$( as sum of the angles of a triangle is\( 180^{\circ}\)

Similarly $\angle D B C=50^{\circ}$

Now Can you finish the Problem?

Third Hint

Now $\angle B D C+\angle D C B+\angle D B C=180^{\circ} \Longrightarrow 90^{\circ}+40^{\circ}+\angle D B C=180^{\circ} \Longrightarrow \angle D B C$=$50^{\circ}$

$\angle B E C+\angle E B C+\angle E C B=180^{\circ} \Longrightarrow 90^{\circ}+70^{\circ}+\angle E C B=180^{\circ} \Rightarrow \angle E C B$=$20^{\circ}$

we take triangle $B F C$, and find $\angle B F C=180^{\circ}-50^{\circ}-20^{\circ}=110^{\circ}$

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.