What are we learning ?

Competency in Focus: Mean and Median calculation

This problem from American Mathematics Contest 8 (AMC 8, 2013) is based on calculation of mean and median. It is Question no. 5 of the AMC 8 2013 Problem series.

First look at the knowledge graph:-

calculation of  mean and median- AMC 8 2013 Problem

Next understand the problem

Hammie is in the $6^\text{th}$ grade and weighs 106 pounds. His quadruplet sisters are tiny babies and weigh 5, 5, 6, and 8 pounds. Which is greater, the average (mean) weight of these five children or the median weight, and by how many pounds?  
Source of the problem
American Mathematical Contest 2013, AMC 8 Problem 5

Key Competency

Basic Statistics and Data Representation mainly calculation of mean and median.

Difficulty Level
4/10
Suggested Book
Challenges and Thrills in Pre College Mathematics Excursion Of Mathematics 

Start with hints 

Do you really need a hint? Try it first!

Let us first find the median of the weight of the five children. For this, we first have to arrange the weights of the five children in increasing order. As we know, the median is the middle value, if there is an odd number of observations, and if there is an even number of observations, it is the average of the two middle values. Thus, lining up the numbers (5, 5, 6, 8, 106), we see that it  is 6 pounds.

Now what we have to find is the mean of the weights of five children .The average weight of the five kids is $\dfrac{5+5+6+8+106}{5} = \dfrac{130}{5} = 26$.
The median here is obviously less than the mean.
Therefore, the average weight is bigger than median weight , by $26-6 = 20$ pounds, making the answer , average by 20.

AMC - AIME Program

AMC - AIME - USAMO Boot Camp for brilliant students. Use our exclusive one-on-one plus group class system to prepare for Math Olympiad

Learn More

Coin Toss Problem | AMC 10A, 2017| Problem No 18

Try this beautiful Problem on Probability from AMC 10A, 2017. Problem-18, You may use sequential hints to solve the problem.

GCF & Rectangle | AMC 10A, 2016| Problem No 19

Try this beautiful Problem on Geometry on Rectangle from AMC 10A, 2010. Problem-19. You may use sequential hints to solve the problem.

Fly trapped inside cubical box | AMC 10A, 2010| Problem No 20

Try this beautiful Problem on Geometry on cube from AMC 10A, 2010. Problem-20. You may use sequential hints to solve the problem.

Measure of angle | AMC 10A, 2019| Problem No 13

Try this beautiful Problem on Geometry from AMC 10A, 2019.Problem-13. You may use sequential hints to solve the problem.

Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-15, You may use sequential hints to solve the problem.

Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-24, You may use sequential hints to solve the problem.

Set of Fractions | AMC 10A, 2015| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2015. Problem-15. You may use sequential hints to solve the problem.

Positive Integers and Quadrilateral | AMC 10A 2015 | Sum 24

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2015. Problem-24. You may use sequential hints to solve the problem.

Rectangular Piece of Paper | AMC 10A, 2014| Problem No 22

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2014. Problem-23. You may use sequential hints to solve the problem.

Probability in Marbles | AMC 10A, 2010| Problem No 23

Try this beautiful Problem on Probability from AMC 10A, 2010. Problem-23. You may use sequential hints to solve the problem.