Cheenta is joining hands with Aditya Birla Education Academy for AMC Training.
Learn More

May 19, 2020

Logarithm Problem From SMO, 2011 | Problem 7

Try this beautiful Logarithm Problem From Singapore Mathematics Olympiad, SMO, 2011 (Problem 7).

Logarithm Problem From SMO

  1. Let \(x=\frac {1}{\log_{\frac {1}{3}} \frac {1}{2}}\)+\(\frac {1}{\log_{\frac {1}{5}} \frac {1}{4}}\)+\(\frac {1}{\log _{\frac {1}{7}} \frac{1}{8}}\) Which of the following statements
    is true?
  • 1.5<x<2
  • 2<x<2.5
  • 2.5<x<3
  • 3<x<3.5
  • 3.5<x<4

Key Concepts

log function


Inverse Exponentiation

Check the Answer

Answer: 3.5<x<4

Singapore Mathematical Olympiad

Challenges and thrills - Pre - College Mathematics

Try with Hints

If you got stuck in this problem we can start from here:

\(x=\frac {1}{\log_{\frac {1}{3}} \frac {1}{2}}\)+\(\frac {1}{\log_{\frac {1}{5}} \frac {1}{4}}\)+\(\frac {1}{\log _{\frac {1}{7}} \frac{1}{8}}\)

If we refer too the basic properties of log we can find ,

x=\(\frac{\log \left(\frac{1}{3}\right)}{\log \left(\frac{1}{2}\right)}\)+\(\frac{\log \left(\frac{1}{5}\right)}{\log \left(\frac{1}{4}\right)}\)+\(\frac{\log \left(\frac{1}{7}\right)}{\log \left(\frac{1}{8}\right)}\)=\(\frac{-\log 3}{-\log 2}+\frac{-\log 5}{-\log 4}+\frac{-\log 7}{-\log 8}\)

Try the rest ......................................

\(\frac{-\log 3}{-\log 2}+\frac{-\log 5}{-\log 4}+\frac{-\log 7}{-\log 8}\)

so we can find

\(\frac {\log 3+ \log 5^{\frac {1}{2}}}+ \log 7^{\frac {1}{3}}{log 2}\)

= \(\frac {\log \sqrt {45} + log 7^{\frac {1}{3}}}{log 2}\) < \(\frac {\log \sqrt {65} + log 8^{\frac {1}{3}}}{log 2}\)

= \(\frac{3 \log 2+\log 2}{\log 2}=4\)

Try the rest .......................

Now let's say ,

2x = \(2 \frac {log 3 + log 5^{\frac {1}{2}}+ log 7^{\frac {1}{3}}}{log 2}\)


\frac{\log (9 \times 5)+\log \left(49^{\frac{1}{3}}\right)}{\log 2}>\frac{\log \left(45 \times 27^{\frac{1}{3}}\right)}{\log 2} = \
\frac{\log (45 \times 3)}{\log 2}>\frac{\log (128)}{\log 2}=7

so x is greater than 3.5.

3.5 <x<4 is the correct answer.

Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.