INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

March 25, 2020

Limit of a function | IIT JAM 2017 | Problem 8

Try this problem from IIT JAM 2017 exam. It deals with evaluating Limit of a function.

Limit of a Function | IIT JAM 2017 | Problem 8

Let $$ f(x)=\frac{x+|x|(1+x)}{x} \sin \left(\frac{1}{x}\right), \quad x \neq 0 $$
Write $L=\displaystyle\lim_{x \to 0^{-}} f(x)$ and $R=\displaystyle\lim_{x \to 0^{+}} f(x) .$

Then which one of the following is true?

  • $L$ exists but $R$ does not exist
  • $L$ does not exist but $R$ exists
  • Both $L$ and $R$ exist
  • Neither $L$ nor $R$ exists

Key Concepts

Real Analysis



Check the Answer

Answer: $L$ exists but $R$ does not exists

IIT JAM 2017 , Problem 8

Try with Hints

Given that, $ f(x)=\frac{x+|x|(1+x)}{x} \sin \left(\frac{1}{x}\right), \quad x \neq 0 $


$ f(x)=1+\frac{|x|}{x}(1+x) \sin \left(\frac{1}{x}\right), \quad x \neq 0 $

$ f(x)=\bigg\{\begin{array}{cc}
(2+x) \sin \left(\frac{1}{x}\right), & , x>0 \\
-x \sin \left(\frac{1}{x}\right), & x<0 \\
\end{array} $

Let, $L=\displaystyle\lim_{x \to 0^{-}} f(x)$

and , $R= \displaystyle \lim_{x \rightarrow 0^{+}} f(x) .$


$L= \displaystyle\lim_{x \to 0^{-}} f(x) $

$\quad = \displaystyle\lim_{x \to 0^{-}} -x \sin \left(\frac{1}{x}\right) $

$ \quad = -\displaystyle\lim_{x \to 0^{-}} x \sin \left(\frac{1}{x}\right) $

Theorem : If $D \subset \mathbb R$ and $f,g : D \to \mathbb R$ . Let $c \in D$. If f is bounded on $N'(c)\cup D$ and $\displaystyle\lim_{x \to c} g(x)=0$, then $\displaystyle\lim_{x \to c}(f.g)(x)=0$.

Now , $ \sin \left(\frac{1}{x}\right) $ is bounded in $\mathbb R - \{0\}$ and $ \displaystyle\lim_{x \to 0^{-}} x=0$ , then $\displaystyle\lim_{x \to 0^{-}} f(x)$ exists and equal to $0$.


$R=\displaystyle\lim_{x\to 0^{+}}f(x)$

$\quad = \displaystyle\lim_{x\to 0^{+}} (2+x) \sin \left(\frac{1}{x}\right),$

$\quad= \displaystyle\lim_{x\to 0^{+}} 2\sin \left(\frac{1}{x}\right) + x \sin \left(\frac{1}{x}\right) $

$\lim_{x \to 0^{+}} \sin \left(\frac{1}{x}\right) $ does not exists [Why?]

Then $L$ exists but $R$ does not.

Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.