How Cheenta works to ensure student success?

Explore the Back-StoryTry this beautiful Problem on Geometry based on Length of the crease from AMC 10 A, 2018. You may use sequential hints to solve the problem.

A paper triangle with sides of lengths and 5 inches, as shown, is folded so that point falls on point . What is the length in inches of the crease?

,

Geometry

Triangle

Pythagoras

Pre College Mathematics

AMC-10A, 2018 Problem-13

Given that ABC is a right-angle triangle shape paper. Now by the problem the point move on point . Therefore a crease will be create i.e . noe we have to find out the length of ?

If you notice very carefully then is the perpendicular bisector of the line . Therefore the is Right-angle triangle. Now the side lengths of ,, are given. so if we can so that the then we can find out the side length of ?

Now can you finish the problem?

In and we have ...

( common angle)

(Right angle)

Therefore the remain angle will be equal ....

Therefore we can say that

Now Can you finish the Problem?

As therefore we can write

Therefore the length in inches of the crease is

- https://www.cheenta.com/surface-area-of-cube-amc-10a-2007-problem-21/
- https://www.youtube.com/watch?v=OvduZbqenWU

Try this beautiful Problem on Geometry based on Length of the crease from AMC 10 A, 2018. You may use sequential hints to solve the problem.

A paper triangle with sides of lengths and 5 inches, as shown, is folded so that point falls on point . What is the length in inches of the crease?

,

Geometry

Triangle

Pythagoras

Pre College Mathematics

AMC-10A, 2018 Problem-13

Given that ABC is a right-angle triangle shape paper. Now by the problem the point move on point . Therefore a crease will be create i.e . noe we have to find out the length of ?

If you notice very carefully then is the perpendicular bisector of the line . Therefore the is Right-angle triangle. Now the side lengths of ,, are given. so if we can so that the then we can find out the side length of ?

Now can you finish the problem?

In and we have ...

( common angle)

(Right angle)

Therefore the remain angle will be equal ....

Therefore we can say that

Now Can you finish the Problem?

As therefore we can write

Therefore the length in inches of the crease is

- https://www.cheenta.com/surface-area-of-cube-amc-10a-2007-problem-21/
- https://www.youtube.com/watch?v=OvduZbqenWU

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More