How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Length and Triangle | AIME I, 1987 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1987 based on Length and Triangle.

Length and Triangle - AIME I, 1987

Triangle ABC has right angle at B, and contains a point P for which PA=10, PB=6, and \(\angle \)APB=\(\angle\)BPC=\(\angle\)CPA. Find PC.

Length and Triangle
  • is 107
  • is 33
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 33.

AIME I, 1987, Question 9

Geometry Vol I to Vol IV by Hall and Stevens

Try with Hints

First hint

Let PC be x, \(\angle \)APB=\(\angle\)BPC=\(\angle\)CPA=120 (in degrees)

Second Hint

Applying cosine law \(\Delta\)APB, \(\Delta\)BPC, \(\Delta\)CPA with cos120=\(\frac{-1}{2}\) gives

\(AB^{2}\)=36+100+60=196, \(BC^{2}\)=36+\(x^{2}\)+6x, \(CA^{2}\)=100+\(x^{2}\)+10x

Final Step

By Pathagorus Theorem, \(AB^{2}+BC^{2}=CA^{2}\)

or, \(x^{2}\)+10x+100=\(x^{2}\)+6x+36+196

or, 4x=132

or, x=33.

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.