Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Jordan form of a matrix - Problem Discussion

Problem (Artin, chapter 4, 7.1) Determine the Jordan form of a matrix $$ \left[ \begin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 1 & 1 \end{array} \right] $$

Discussion According to the Jordan form of a matrix, we first determine the characteristic polynomial of the above matrix.

To do that, first we subtract $$ \lambda $$ from each of the diagonal entries of the matrix and then the matrix looks like $$ \left[ \begin{array} {ccc} 1-\lambda & 1& 0\ 0 & 1-\lambda & 0\ 0 & 1 & 1-\lambda \end{array} \right] $$

Now the determinant of this second matrix will give us the desired eigenvalues so the determinant is $$ (1-\lambda)^3 $$

Equating the determinant value = 0 we get that the only eigenvalue of the matrix is 1 and it is a repeated eigenvalue.

So now the Jordan form of the matrix will be of the form $$ \left[ \begin{array} {ccc} 1 & 0 & 0 \ 1 & 1 & 0 \ 0 & 1 & 1 \end{array} \right] $$

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com