 Get inspired by the success stories of our students in IIT JAM MS, ISI  MStat, CMI MSc Data Science.  Learn More

# ISI MStat 2018 PSA Problem 10 | Dirichlet Function This is a problem from ISI MStat 2018 PSA Problem 10 based on Dirichlet Function.

## Dirichlet Function - ISI MStat Year 2018 PSA Question 10

Let $x$ be a real number. Then $\lim {m \rightarrow \infty}\left(\lim {n \rightarrow \infty} \cos ^{2 n}(m ! \pi x)\right)$

• (A) does not exist for any x
• (B) exists for all x
• (C) exists if and only if x is irrational
• (D) exists if and only if x is rational

### Key Concepts

Limit

Sandwich Theorem

ISI MStat 2018 PSA Problem 10

Introduction to Real Analysis by Bertle Sherbert

## Try with Hints

First hint

Check two cases separately one when x is rational and other is when x is irrational.

Second Hint

If $m!x$  is an integer, then $cos ^{2 n}(m ! \pi x) =1$

If x is rational $\frac{p}{q}$, then, eventually, for large enough m, m! will be divisible by q , so that $m!x$ will be an integer, and we have $\lim {m \rightarrow \infty}\left(\lim {n \rightarrow \infty} \cos ^{2 n}(m ! \pi x)\right) =1$

Final Step

If x is irrational, $m!x$  will never be an integer, and $|cos(m! {\pi } x)|<1$ , so that $\lim {m \rightarrow \infty}\left(\lim {n \rightarrow \infty} \cos ^{2 n}(m ! \pi x)\right) =0$  for all m>0 by Sandwich Theorem.

## Subscribe to Cheenta at Youtube

This is a problem from ISI MStat 2018 PSA Problem 10 based on Dirichlet Function.

## Dirichlet Function - ISI MStat Year 2018 PSA Question 10

Let $x$ be a real number. Then $\lim {m \rightarrow \infty}\left(\lim {n \rightarrow \infty} \cos ^{2 n}(m ! \pi x)\right)$

• (A) does not exist for any x
• (B) exists for all x
• (C) exists if and only if x is irrational
• (D) exists if and only if x is rational

### Key Concepts

Limit

Sandwich Theorem

ISI MStat 2018 PSA Problem 10

Introduction to Real Analysis by Bertle Sherbert

## Try with Hints

First hint

Check two cases separately one when x is rational and other is when x is irrational.

Second Hint

If $m!x$  is an integer, then $cos ^{2 n}(m ! \pi x) =1$

If x is rational $\frac{p}{q}$, then, eventually, for large enough m, m! will be divisible by q , so that $m!x$ will be an integer, and we have $\lim {m \rightarrow \infty}\left(\lim {n \rightarrow \infty} \cos ^{2 n}(m ! \pi x)\right) =1$

Final Step

If x is irrational, $m!x$  will never be an integer, and $|cos(m! {\pi } x)|<1$ , so that $\lim {m \rightarrow \infty}\left(\lim {n \rightarrow \infty} \cos ^{2 n}(m ! \pi x)\right) =0$  for all m>0 by Sandwich Theorem.

## Subscribe to Cheenta at Youtube

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### 2 comments on “ISI MStat 2018 PSA Problem 10 | Dirichlet Function”

1. Arnab Chattopadhyay. says:

What I can see that the limit exists for all real $x.$ If $x$ is rational the limit evaluates to $1$ and if $x$ is irrational the limit evaluates to $0.$ Then why do say that the limit doesn't exist for any real $x$? The reasoning is not quite clear to me. Can you please explain?

1. Pravat Hati says:

Don't worry. It will be (B) i.e limit exists for all real x we have also shown that . I mistakenly put A as option . Between thanks for your valuable reply.

### Knowledge Partner  