Get inspired by the success stories of our students in IIT JAM 2021. Learn More 

June 4, 2020

ISI MStat 2018 PSA Problem 10 | Dirichlet Function

This is a problem from ISI MStat 2018 PSA Problem 10 based on Dirichlet Function.

Dirichlet Function - ISI MStat Year 2018 PSA Question 10


Let \(x\) be a real number. Then \( \lim {m \rightarrow \infty}\left(\lim {n \rightarrow \infty} \cos ^{2 n}(m ! \pi x)\right) \)

  • (A) does not exist for any x
  • (B) exists for all x
  • (C) exists if and only if x is irrational
  • (D) exists if and only if x is rational

Key Concepts


Limit

Sandwich Theorem

Check the Answer


Answer: is (B)

ISI MStat 2018 PSA Problem 10

Introduction to Real Analysis by Bertle Sherbert

Try with Hints


First hint

Check two cases separately one when x is rational and other is when x is irrational.

Second Hint

If \( m!x \)  is an integer, then \( cos ^{2 n}(m ! \pi x) =1 \)

If x is rational \( \frac{p}{q}\), then, eventually, for large enough m, m! will be divisible by q , so that \(m!x\) will be an integer, and we have \( \lim {m \rightarrow \infty}\left(\lim {n \rightarrow \infty} \cos ^{2 n}(m ! \pi x)\right) =1 \)

Final Step

If x is irrational, \( m!x \)  will never be an integer, and \( |cos(m! {\pi } x)|<1\) , so that \( \lim {m \rightarrow \infty}\left(\lim {n \rightarrow \infty} \cos ^{2 n}(m ! \pi x)\right) =0 \)  for all m>0 by Sandwich Theorem.

ISI MStat 2018 PSA Problem 10
Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube


2 comments on “ISI MStat 2018 PSA Problem 10 | Dirichlet Function”

  1. What I can see that the limit exists for all real $x.$ If $x$ is rational the limit evaluates to $1$ and if $x$ is irrational the limit evaluates to $0.$ Then why do say that the limit doesn't exist for any real $x$? The reasoning is not quite clear to me. Can you please explain?

    1. Don't worry. It will be (B) i.e limit exists for all real x we have also shown that . I mistakenly put A as option . Between thanks for your valuable reply.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com