 How Cheenta works to ensure student success?
Explore the Back-Story

# ISI B.Stat B.Math 2021 Objective Paper | Problems & Solutions In this post, you will find ISI B.Stat B.Math 2021 Objective Paper with Problems and Solutions. This is a work in progress, so the solutions and discussions will be uploaded soon. You may share your solutions in the comments below.

[Work in Progress]

Problem 1

The number of ways one can express $2^{2} 3^{3} 5^{5} 7^{7}$ as a product of two numbers $a$ and $b$, where $\text{gcd}(a, b)=1$, and $1<a<b$, is

• (A) 5
• (B) 6
• (C) 7
• (D) 8

Discussion

Problem 2

The sum of all the solutions of $2 + \log_2 (x-2) = \log_{(x-2)} 8$ in the interval $(2, \infty)$ is

• (A) $\frac{35}{8}$.
• (B) $5$
• (C) $\frac{49}{8}$
• (D)$\frac{55}{8}$

Problem 3

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that
$$f(x+1)=\frac{1}{2} f(x) \text { for all } x \in \mathbb{R}$$
and let $a_{n}=\int_{0}^{n} f(x) d x$ for all integers $n \geq 1$. Then:

(A) $\lim {n \rightarrow \infty} a_{n}$ exists and equals $\int_{0}^{1} f(x) d x$.
(B) $\lim {n \rightarrow \infty} a_{n}$ does not exist.
(C) $\lim {n \rightarrow \infty} a_{n}$ exists if and only if $|\int_{0}^{1} f(x) d x|<1$.
(D) $\lim {n \rightarrow \infty} a_{n}$ exists and equals $2 \int_{0}^{1} f(x) d x$.

Problem 4

Consider the curves $x^{2}+y^{2}-4 x-6 y-12=0,9 x^{2}+4 y^{2}-900=0$ and $y^{2}-6 y-6 x+51=0 .$ The maximum number of disjoint regions into which these curves divide the $X Y$ -plane (excluding the curves themselves), is
(A) 4 .
(B) 5 .
(C) 6 .
(D) 7 .

Problem 5

A box has $13$ distinct pairs of socks. Let $p_{r}$ denote the probability of having at least one matching pair among $a$ bunch of $r$ socks drawn at random from the box. If $r_{0}$ is the maximum possible value of $r$ such that $p_{r}<1$, then the value of $p_{r_{0}}$ is

(A) $1-\frac{12}{ 26C_{12} }$.
(B) $1-\frac{13}{ 26C_{13} }$.
(C) $1-\frac{2^{13}}{ 26C_{13} } .$
(D) $1-\frac{2^{12}}{26C_{12}}$.

Problem 6

Let $a, b, c, d>0$, be any real numbers. Then the maximum prossible value of $c x+d y$, over all points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, must the
(A) $\sqrt{a^{2} c^{2}+b^{2} d^{2}}$.
(B) $\sqrt{a^{2} b^{2}+c^{2} d^{2}}$.
(C) $\sqrt{\frac{a^{2} c^{2}+b^{2} d^{2}}{a^{2}+b^{2}}}$.
(D) $\sqrt{\frac{a^{2} b^{2}+c^{2} d^{2}}{c^{2}+d^{2}}}$.

Problem 7

Let $f(x)=\sin x+\alpha x, x \in \mathbb{R}$, where $\alpha$ is a fixed real number. The function $f$ is one-to-one if and only if
(A) $\alpha>1$ or $\alpha<-1$.
(B) $\alpha \geq 1$ or $\alpha \leq-1$.
(C) $a \geq 1$ or $\alpha<-1$.
(D) $\alpha>1$ or $\alpha \leq-1$.

Problem 8

The Value of

$$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+3+\cdots 2021}$$ is

(A) $\frac{2021}{1010}$.
(B) $\frac{2021}{1011}$.
(C) $\frac{2021}{1012}$.
(D) $\frac{2021}{1013}$.

Problem 9

The volume of the region $S=\{(x, y, z):|x|+2|y|+3|z| \leq 6\}$ is
(A) 36 .
(B) 48 .
(C) 72
(D) 6 .

Problem 10:

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that $\frac{d^{2} f(x)}{d x^{2}}$ is positive for all $x \in \mathbb{R}$, and suppose $f(0)=1, f(1)=4$. Which of the following is not a possible value of $f(2)$ ?
(A) 7 .
(B) 8 .
(C) 9 .
(D) $10$

Problem 11:

Let, $f(x)=e^{-|x|}, x \in \mathbb{R}$,

and $g(\theta)=\int_{-1}^{1} f\left(\frac{x}{\theta}\right) d x, \theta \neq 0$

Then , $\lim _{\theta \rightarrow 0} \frac{g(\theta)}{\theta}$

(A) equals 0 .
(B) equals $+\infty$.
(C) equals 2 .
(D) does not exist.

Problem 12:

The number of different ways to colour the vertices of a square $P Q R S$ using one or more colours from the set \{Red, Blue, Green, Yellow \}$, such that no two adjacent vertices have the same colour is (A) 36 . (B) 48 . (C) 72 . (D) 84 . Problem 13: Define$a=p^{3}+p^{2}+p+11$and$b=p^{2}+1$, where$p$is any prime number. Let$d=g c d(a, b)$. Then the set of possible values of$d$is (A)${1,2,5}$. (B)${2,5,10}$. (C)${1,5,10}$. (D)${1,2,10}$. Problem 14: Consider all$2 \times 2$matrices whose entries are distinct and taken from the set$\{1,2,3,4\}$. The sum of determinants of all such matrices is (A) 24 . (B) 10 . (C) 12 . (D) 0 . Problem 15: Let$a, b, c$and$d$be four non-negative real numbers where$a+b+c+d= 1$. The number of different ways one can choose these numbers such that$a^{2}+b^{2}+c^{2}+d^{2}=\max \{a, b, c, d\}$is (A) 1 . (B) 5 . (C) 11 . (D) 15 . Problem 16: The polynomial$x^{4}+4 x+c=0$has at least one real root if and only if (A)$c<2$. (B)$c \leq 2$. (C)$c<3$. (D)$c \leq 3$. problem 17: The number of all integer solutions of the equation$x^{2}+y^{2}+x-y=$2021 is (A) 5 . (B) 7 . (C) 1 . (D)$0 .$Problem 18: The number of different values of$a$for which the equation$x^{3}-x+a=$0 has two identical real roots is (A) 0 . (B) 1 . (C)$2 .$(D) 3 . Problem 19: Suppose$f(x)$is a twice differentiable function on$[a, b]$such that$f(a)=0=f(b)$and$x^{2} \frac{d^{2} f(x)}{d x^{2}}+4 x \frac{d f(x)}{d x}+2 f(x)>0$for all$x \in(a, b)$Then, (A)$f$is negative for all$x \in(a, b)$. (B)$f$is positive for all$x \in(a, b)$. (C)$f(x)=0$for exactly one$x \in(a, b)$. (D)$f(x)=0$for at least two$x \in(a, b)$. Problem 20: Consider the following two subsets of$\mathbb{C}$:$A=\{\frac{1}{z}:|z|=2\}$and$B=\{\frac{1}{z}:|z-1|=2\} .$Then , (A)$A$is a circle, but$B$is not a circle. (B)$B$is a circle, but$A$is not a circle. (C)$A$and$B$are both circles. (D) Neither$A$nor$B$is a circle. Problem 21: For a positive integer$n$, the equation $$x^{2}=n+y^{2}, \quad x, y$$ integers does not have a solution if and only if (A)$n=2$. (B)$n$is a prime number. (C)$n$is an odd number. (D)$n$is an even number not divisible by 4 . problem 22: Let$f: \mathbb{R} \rightarrow \mathbb{R}$be any twice differentiable function such that its second derivative is continuous and$\frac{d f(x)}{d x} \neq 0$for all$x \neq 0$. If$\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\pi$, then , (A) for all$x \neq 0, \quad f(x)>f(0)$. (B) for all$x \neq 0, \quad f(x)0$(C) for all$x, \quad \frac{d^{2} f(x)}{d x^{2}}>0$(D) for all$x, \quad \frac{d^{2} f(x)}{d x^{2}}<0$. Problem 23: Let us denote the fractional part of a real number$x$by${x}$(note:${x}=x-[x]$where$[x]$is the integer part of$x$). Then, $$\lim _{n \rightarrow \infty}\{(3+2 \sqrt{2})^{n}\}$$ (A) equals 0. (D) equals 1 . (C) equals$\frac{1}{2}$. (D) does not exist. Problem 24: Let, $$p(x)=x^{3}-3 x^{2}+2 x, x \in \mathbb{R}$$$f_{0}(x)= \begin{cases}\int_{0}^{x} p(t) d t, & x \geq 0 \ -\int_{x}^{0} p(t) d t, & x<0\end{cases}$,$f_{1}(x)=e^{f_{0}(x)}, \quad f_{2}(x)=e^{f_{1}(x)}, \quad \ldots \quad, f_{n}(x)=e^{f_{n-1}(x)}$How many roots does the equation$\frac{d f_{n}(x)}{d x}=0$have in the interval$(-\infty, \infty) ?$(A) 1 . (B) 3 . (C)$n+3$. (D)$3 n$. Problem 25: For$0 \leq x<2 \pi$, the number of solutions of the equation $$\sin ^{2} x+2 \cos ^{2} x+3 \sin x \cos x=0$$ is (A) 1 . (B) 2 . (C) 3 . (D) 4 . Problem 26: Let$f: \mathbb{R} \rightarrow[0, \infty)$be a continuous function such that$f(x+y)=f(x) f(y)$for all$x, y \in \mathbb{R}$. Suppose that$f$is differentiable at$x=1$and$\left.\frac{d f(x)}{d x}\right|_{x=1}=2 .$Then, the value of$f(1) \log _{e} f(1)$is (A)$e$. (B) 2 .$(\mathrm{C}) \log _{e} 2$(D) 1. Problem 27: The expression$\sum_{k=0}^{10} 2^{k} \tan \left(2^{k}\right)$equals (A)$\cot 1+2^{11} \cot \left(2^{11}\right)$(B)$\cot 1-2^{10} \cot \left(2^{10}\right)$. (C)$\cot 1+2^{10} \cot \left(2^{10}\right)$. (D)$\cot 1-2^{11} \cot \left(2^{11}\right)$. Problem 28: If the maximum and minimum values of$\sin ^{6} x+\cos ^{6} x$, as$x$takes all real values, are$a$and$b$, respectively, then$a-b$equals (A)$\frac{1}{2}$. (B)$\frac{2}{3}$. (C)$\frac{3}{4}$. (D) 1 . Problem 29: If two real numbers$x$and$y$satisfy$(x+5)^{2}+(y-10)^{2}=196$, then the minimum possible value of$x^{2}+2 x+y^{2}-4 y$is (A)$271-112 \sqrt{5}$. (B)$14-4 \sqrt{5}$. (C)$276-112 \sqrt{5}$. (D)$9-4 \sqrt{5}$. Problem 30: Define$f: \mathbb{R} \rightarrow \mathbb{R}$by$f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0, \ 0, & x=0 .\end{cases}$, Then, (A)$f$is discontinuous. (B)$f$is continuous but not differentiable. (C)$f$is differentiable and its derivative is discontinuous. (D)$f$is differentiable and its derivative is continuous. ## More Important Resources In this post, you will find ISI B.Stat B.Math 2021 Objective Paper with Problems and Solutions. This is a work in progress, so the solutions and discussions will be uploaded soon. You may share your solutions in the comments below. [Work in Progress] Problem 1 The number of ways one can express$2^{2} 3^{3} 5^{5} 7^{7}$as a product of two numbers$a$and$b$, where$\text{gcd}(a, b)=1$, and$1<a<b$, is • (A) 5 • (B) 6 • (C) 7 • (D) 8 Discussion Problem 2 The sum of all the solutions of$ 2 + \log_2 (x-2) = \log_{(x-2)} 8$in the interval$(2, \infty)$is • (A)$\frac{35}{8}$. • (B)$5$• (C)$\frac{49}{8}$• (D)$ \frac{55}{8}$Problem 3 Let$f: \mathbb{R} \rightarrow \mathbb{R}$be a continuous function such that $$f(x+1)=\frac{1}{2} f(x) \text { for all } x \in \mathbb{R}$$ and let$a_{n}=\int_{0}^{n} f(x) d x$for all integers$n \geq 1$. Then: (A)$\lim {n \rightarrow \infty} a_{n}$exists and equals$\int_{0}^{1} f(x) d x$. (B)$\lim {n \rightarrow \infty} a_{n}$does not exist. (C)$\lim {n \rightarrow \infty} a_{n}$exists if and only if$|\int_{0}^{1} f(x) d x|<1$. (D)$\lim {n \rightarrow \infty} a_{n}$exists and equals$2 \int_{0}^{1} f(x) d x$. Problem 4 Consider the curves$x^{2}+y^{2}-4 x-6 y-12=0,9 x^{2}+4 y^{2}-900=0$and$y^{2}-6 y-6 x+51=0 .$The maximum number of disjoint regions into which these curves divide the$X Y$-plane (excluding the curves themselves), is (A) 4 . (B) 5 . (C) 6 . (D) 7 . Problem 5 A box has$13$distinct pairs of socks. Let$p_{r}$denote the probability of having at least one matching pair among$a$bunch of$r$socks drawn at random from the box. If$r_{0}$is the maximum possible value of$r$such that$p_{r}<1$, then the value of$p_{r_{0}}$is (A)$1-\frac{12}{ 26C_{12} }$. (B)$1-\frac{13}{ 26C_{13} }$. (C)$1-\frac{2^{13}}{ 26C_{13} } .$(D)$1-\frac{2^{12}}{26C_{12}}$. Problem 6 Let$a, b, c, d>0$, be any real numbers. Then the maximum prossible value of$c x+d y$, over all points on the ellipse$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, must the (A)$\sqrt{a^{2} c^{2}+b^{2} d^{2}}$. (B)$\sqrt{a^{2} b^{2}+c^{2} d^{2}}$. (C)$\sqrt{\frac{a^{2} c^{2}+b^{2} d^{2}}{a^{2}+b^{2}}}$. (D)$\sqrt{\frac{a^{2} b^{2}+c^{2} d^{2}}{c^{2}+d^{2}}}$. Problem 7 Let$f(x)=\sin x+\alpha x, x \in \mathbb{R}$, where$\alpha$is a fixed real number. The function$f$is one-to-one if and only if (A)$\alpha>1$or$\alpha<-1$. (B)$\alpha \geq 1$or$\alpha \leq-1$. (C)$a \geq 1$or$\alpha<-1$. (D)$\alpha>1$or$\alpha \leq-1$. Problem 8 The Value of $$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+3+\cdots 2021}$$ is (A)$\frac{2021}{1010}$. (B)$\frac{2021}{1011}$. (C)$\frac{2021}{1012}$. (D)$\frac{2021}{1013}$. Problem 9 The volume of the region$S=\{(x, y, z):|x|+2|y|+3|z| \leq 6\}$is (A) 36 . (B) 48 . (C) 72 (D) 6 . Problem 10: Let$f: \mathbb{R} \rightarrow \mathbb{R}$be a twice differentiable function such that$\frac{d^{2} f(x)}{d x^{2}}$is positive for all$x \in \mathbb{R}$, and suppose$f(0)=1, f(1)=4$. Which of the following is not a possible value of$f(2)$? (A) 7 . (B) 8 . (C) 9 . (D)$10$Problem 11: Let,$f(x)=e^{-|x|}, x \in \mathbb{R}$, and$g(\theta)=\int_{-1}^{1} f\left(\frac{x}{\theta}\right) d x, \theta \neq 0$Then ,$\lim _{\theta \rightarrow 0} \frac{g(\theta)}{\theta}$(A) equals 0 . (B) equals$+\infty$. (C) equals 2 . (D) does not exist. Problem 12: The number of different ways to colour the vertices of a square$P Q R S$using one or more colours from the set \{Red, Blue, Green, Yellow \}$, such that no two adjacent vertices have the same colour is
(A) 36 .
(B) 48 .
(C) 72 .
(D) 84 .

Problem 13:

Define $a=p^{3}+p^{2}+p+11$ and $b=p^{2}+1$, where $p$ is any prime number. Let $d=g c d(a, b)$. Then the set of possible values of $d$ is
(A) ${1,2,5}$.
(B) ${2,5,10}$.
(C) ${1,5,10}$.
(D) ${1,2,10}$.

Problem 14:

Consider all $2 \times 2$ matrices whose entries are distinct and taken from the set $\{1,2,3,4\}$. The sum of determinants of all such matrices is
(A) 24 .
(B) 10 .
(C) 12 .
(D) 0 .

Problem 15:

Let $a, b, c$ and $d$ be four non-negative real numbers where $a+b+c+d= 1$. The number of different ways one can choose these numbers such that $a^{2}+b^{2}+c^{2}+d^{2}=\max \{a, b, c, d\}$ is
(A) 1 .
(B) 5 .
(C) 11 .
(D) 15 .

Problem 16:

The polynomial $x^{4}+4 x+c=0$ has at least one real root if and only if
(A) $c<2$.
(B) $c \leq 2$.
(C) $c<3$.
(D) $c \leq 3$.

problem 17:

The number of all integer solutions of the equation $x^{2}+y^{2}+x-y=$ 2021 is
(A) 5 .
(B) 7 .
(C) 1 .
(D) $0 .$

Problem 18:

The number of different values of $a$ for which the equation $x^{3}-x+a=$ 0 has two identical real roots is
(A) 0 .
(B) 1 .
(C) $2 .$
(D) 3 .

Problem 19:

Suppose $f(x)$ is a twice differentiable function on $[a, b]$ such that $f(a)=0=f(b)$

and $x^{2} \frac{d^{2} f(x)}{d x^{2}}+4 x \frac{d f(x)}{d x}+2 f(x)>0$ for all $x \in(a, b)$

Then,

(A) $f$ is negative for all $x \in(a, b)$.
(B) $f$ is positive for all $x \in(a, b)$.
(C) $f(x)=0$ for exactly one $x \in(a, b)$.
(D) $f(x)=0$ for at least two $x \in(a, b)$.

Problem 20:

Consider the following two subsets of $\mathbb{C}$ :

$A=\{\frac{1}{z}:|z|=2\}$ and $B=\{\frac{1}{z}:|z-1|=2\} .$

Then ,

(A) $A$ is a circle, but $B$ is not a circle.
(B) $B$ is a circle, but $A$ is not a circle.
(C) $A$ and $B$ are both circles.
(D) Neither $A$ nor $B$ is a circle.

Problem 21:

For a positive integer $n$, the equation

$$x^{2}=n+y^{2}, \quad x, y$$ integers

does not have a solution if and only if

(A) $n=2$.
(B) $n$ is a prime number.
(C) $n$ is an odd number.
(D) $n$ is an even number not divisible by 4 .

problem 22:

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be any twice differentiable function such that its second
derivative is continuous and $\frac{d f(x)}{d x} \neq 0$ for all $x \neq 0$.

If $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\pi$, then ,

(A) for all $x \neq 0, \quad f(x)>f(0)$.
(B) for all $x \neq 0, \quad f(x)0$

(C) for all $x, \quad \frac{d^{2} f(x)}{d x^{2}}>0$
(D) for all $x, \quad \frac{d^{2} f(x)}{d x^{2}}<0$.

Problem 23:

Let us denote the fractional part of a real number $x$ by ${x}$ (note:
${x}=x-[x]$ where $[x]$ is the integer part of $x$ ). Then,

$$\lim _{n \rightarrow \infty}\{(3+2 \sqrt{2})^{n}\}$$

(A) equals 0.
(D) equals 1 .
(C) equals $\frac{1}{2}$.
(D) does not exist.

Problem 24:

Let,

$$p(x)=x^{3}-3 x^{2}+2 x, x \in \mathbb{R}$$

$f_{0}(x)= \begin{cases}\int_{0}^{x} p(t) d t, & x \geq 0 \ -\int_{x}^{0} p(t) d t, & x<0\end{cases}$,

$f_{1}(x)=e^{f_{0}(x)}, \quad f_{2}(x)=e^{f_{1}(x)}, \quad \ldots \quad, f_{n}(x)=e^{f_{n-1}(x)}$

How many roots does the equation $\frac{d f_{n}(x)}{d x}=0$ have in the interval $(-\infty, \infty) ?$

(A) 1 .
(B) 3 .
(C) $n+3$.
(D) $3 n$.

Problem 25:

For $0 \leq x<2 \pi$, the number of solutions of the equation

$$\sin ^{2} x+2 \cos ^{2} x+3 \sin x \cos x=0$$

is

(A) 1 .
(B) 2 .
(C) 3 .
(D) 4 .

Problem 26:
Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a continuous function such that

$f(x+y)=f(x) f(y)$

for all $x, y \in \mathbb{R}$. Suppose that $f$ is differentiable at $x=1$ and

$\left.\frac{d f(x)}{d x}\right|_{x=1}=2 .$

Then, the value of $f(1) \log _{e} f(1)$ is

(A) $e$.

(B) 2 .

$(\mathrm{C}) \log _{e} 2$

(D) 1.

Problem 27:

The expression $\sum_{k=0}^{10} 2^{k} \tan \left(2^{k}\right)$ equals

(A) $\cot 1+2^{11} \cot \left(2^{11}\right)$
(B) $\cot 1-2^{10} \cot \left(2^{10}\right)$.
(C) $\cot 1+2^{10} \cot \left(2^{10}\right)$.
(D) $\cot 1-2^{11} \cot \left(2^{11}\right)$.

Problem 28:

If the maximum and minimum values of $\sin ^{6} x+\cos ^{6} x$, as $x$ takes all

real values, are $a$ and $b$, respectively, then $a-b$ equals

(A) $\frac{1}{2}$.

(B) $\frac{2}{3}$.

(C) $\frac{3}{4}$.

(D) 1 .

Problem 29:

If two real numbers $x$ and $y$ satisfy $(x+5)^{2}+(y-10)^{2}=196$, then the minimum possible value of

$x^{2}+2 x+y^{2}-4 y$ is

(A) $271-112 \sqrt{5}$.
(B) $14-4 \sqrt{5}$.
(C) $276-112 \sqrt{5}$.
(D) $9-4 \sqrt{5}$.

Problem 30:

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0, \ 0, & x=0 .\end{cases}$,

Then,

(A) $f$ is discontinuous.
(B) $f$ is continuous but not differentiable.
(C) $f$ is differentiable and its derivative is discontinuous.
(D) $f$ is differentiable and its derivative is continuous.

## More Important Resources

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy  