How Cheenta works to ensure student success?
Explore the Back-Story

ISI B.STAT PAPPER 2018 |SUBJECTIVE

Problem

Let $f$:$\mathbb{R} \rightarrow \mathbb{R}$ be a continous function such that for all$x \in \mathbb{R}$ and all $t\geq 0$

f(x)=f(ktx)
where $k>1$ is a fixed constant

Hint

Case-1


choose any 2 arbitary nos $x,y$ using the functional relationship prove that $f(x)=f(y)$

Case-2


when $x,y$ are of opposite signs then show that $$f(x)=f(\frac{x}{2})=f(\frac{x}{4})\dots$$
use continuity to show that $f(x)=f(0)$

Solution


Let us take any $2$ real nos $x$ and $y$.

Case-1

$x$ and $y$ are of same sign . WLG $0<x<y$

Then$\frac{y}{x}>1$
so there is a no $t\geq 0$ such that
$\frac{y}{x}=k^t$
$f(y)=f(k^tx)=f(x)$ [using$f(x)=f(k^tx)$]

case-2

$x,y$ are of opposite sign. WLG $x<0<y$
Then $f(x)=f(k^tx)$

$\Rightarrow f(k^tx)=f(k^t2\frac{1}{2}x)$


$\Rightarrow f(k^t2\frac{1}{2}x)=f(k^tk^{log_k2}\frac{x}{2})$


$\Rightarrow f(k^tk^{log_k2}\frac{x}{2})=f(k^{t+log_k2}\frac{x}{2})$

$\Rightarrow f(k^{t+log_k2}\frac{x}{2})=f(\frac{x}{2})$


Using this logic repeatedly we get


$f(x)=f(\frac{x}{2})=f(\frac{x}{4})\dots =f(\frac{x}{2^n})$


Now $\frac{x}{2^n}\rightarrow0$ and $f$ is a continous function hence $\lim_{n\to\infty}f(\frac{x}{2^n})=f(0)$.


[Because we know if $f$ is a continous function and $x_n$ is a sequence that converges to $x$ then $\lim_{n\to\infty}f(x_n)=f(x)$]


using similar logic we can show that $f(y)=f(0)$ so $f(x)=f(y)$ for any $x,y\in \mathbb{R}$


Problem

Let $f$:$\mathbb{R} \rightarrow \mathbb{R}$ be a continous function such that for all$x \in \mathbb{R}$ and all $t\geq 0$

f(x)=f(ktx)
where $k>1$ is a fixed constant

Hint

Case-1


choose any 2 arbitary nos $x,y$ using the functional relationship prove that $f(x)=f(y)$

Case-2


when $x,y$ are of opposite signs then show that $$f(x)=f(\frac{x}{2})=f(\frac{x}{4})\dots$$
use continuity to show that $f(x)=f(0)$

Solution


Let us take any $2$ real nos $x$ and $y$.

Case-1

$x$ and $y$ are of same sign . WLG $0<x<y$

Then$\frac{y}{x}>1$
so there is a no $t\geq 0$ such that
$\frac{y}{x}=k^t$
$f(y)=f(k^tx)=f(x)$ [using$f(x)=f(k^tx)$]

case-2

$x,y$ are of opposite sign. WLG $x<0<y$
Then $f(x)=f(k^tx)$

$\Rightarrow f(k^tx)=f(k^t2\frac{1}{2}x)$


$\Rightarrow f(k^t2\frac{1}{2}x)=f(k^tk^{log_k2}\frac{x}{2})$


$\Rightarrow f(k^tk^{log_k2}\frac{x}{2})=f(k^{t+log_k2}\frac{x}{2})$

$\Rightarrow f(k^{t+log_k2}\frac{x}{2})=f(\frac{x}{2})$


Using this logic repeatedly we get


$f(x)=f(\frac{x}{2})=f(\frac{x}{4})\dots =f(\frac{x}{2^n})$


Now $\frac{x}{2^n}\rightarrow0$ and $f$ is a continous function hence $\lim_{n\to\infty}f(\frac{x}{2^n})=f(0)$.


[Because we know if $f$ is a continous function and $x_n$ is a sequence that converges to $x$ then $\lim_{n\to\infty}f(x_n)=f(x)$]


using similar logic we can show that $f(y)=f(0)$ so $f(x)=f(y)$ for any $x,y\in \mathbb{R}$


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
magic-wandrockethighlight