How Cheenta works to ensure student success?
Explore the Back-Story

ISI 2019 Subjective Problem 2 | Removable Discontinuity

Try this beautiful Subjective Calculus Problem appeared in ISI Entrance - 2019.

Problem

Let \(f:(0, \infty) \rightarrow \mathbb{R}\) be defined by
\[
f(x)=\lim _{n \rightarrow \infty} \cos ^{n}\left(\frac{1}{n^{x}}\right)
\]
(a) Show that \(f\) has exactly one point of discontinuity.
(b) Evaluate \(f\) at its point of discontinuity.


 

Key Concepts


 

 

 

Calculus

 

Limit , Continuity

 

 

Suggested Book | Source | Answer


Suggested Reading: IIT mathematics by Asit Das Gupta

Source of the Problem: ISI UG Entrance - 2019 , Subjective problem number - 2

Try with Hints



Hint 1:

Observe that,

we have \(\frac{1}{n^x} \rightarrow 0 \)

as x∈(0,) and n→∞.

So the indeterminate form of the given limit is \(1^{\infty}.\)

Hint 2:

\[f(x)=\lim _{n \rightarrow \infty} \cos ^{n}\left(\frac{1}{n^{x}}\right)\]

 

\[=e^{\lim _{n \rightarrow \infty} n \log \cos \left(\frac{1}{n^{x}}\right)}\]

 

=elimn→∞nlog[1−2sin2(12nx)]

\[=e^{\lim _{n \rightarrow \infty}\frac{ n \log [1-2 \sin ^{2}(\frac{1}{2 n^{x}})]}{-2 \sin ^{2}(\frac{1}{2 n^{x}})}(-2 \sin ^{2}(\frac{1}{2 n^{x}}))}\]

Hint 3:

As we have \(\frac{1}{n^x} \rightarrow 0 \) ,

\[lim_{n\rightarrow \infty}-2 \sin ^{2}\left(\frac{1}{2 n^{x}}\right)=0.\]

And we have the standard result :

\[lim_{x \rightarrow 0}\frac{log(1+x)}{x} = 1 \]

Hint 4:

Therefore ,

\[f(x)=e^{\lim _{n \rightarrow \infty} n [-2 \sin ^{2}(\frac{1}{2 n^{x}})]}\]

\[f(x)=e^{\lim _{n \rightarrow \infty} -2n [\frac{ \sin ^{2}(\frac{1}{2 n^x})}{(\frac{1}{2 n^{x}})^2}](\frac{1}{2 n^{x}})^2}\]

And here again,

\(lim_{n \rightarrow \infty}\frac{1}{2n^x} \rightarrow 0 .\)

So \(f(x)\) reduces to ,

\[ f(x) = e^{\lim _{n \rightarrow \infty}-2n (\frac{1}{2 n^{x}})^2}\]

\[f(x)=e^{-\frac{1}{2} \lim _{n \rightarrow \infty} n^{1-2 x}}\]

Hint 5:

Therefore ,

\[ f(x) = \Bigg{\{}{\begin{matrix}
0 & , & x < \frac{1}{2}\\
e^{-\frac{1}{2}} & ,& x= \frac{1}{2} \\1 & , & x> \frac{1}{2}
\end{matrix}}\]

Discontinuity at \(x= \frac{1}{2}\)



ISI Entrance Program at Cheenta

Subscribe to Cheenta at Youtube


 

Try this beautiful Subjective Calculus Problem appeared in ISI Entrance - 2019.

Problem

Let \(f:(0, \infty) \rightarrow \mathbb{R}\) be defined by
\[
f(x)=\lim _{n \rightarrow \infty} \cos ^{n}\left(\frac{1}{n^{x}}\right)
\]
(a) Show that \(f\) has exactly one point of discontinuity.
(b) Evaluate \(f\) at its point of discontinuity.


 

Key Concepts


 

 

 

Calculus

 

Limit , Continuity

 

 

Suggested Book | Source | Answer


Suggested Reading: IIT mathematics by Asit Das Gupta

Source of the Problem: ISI UG Entrance - 2019 , Subjective problem number - 2

Try with Hints



Hint 1:

Observe that,

we have \(\frac{1}{n^x} \rightarrow 0 \)

as x∈(0,) and n→∞.

So the indeterminate form of the given limit is \(1^{\infty}.\)

Hint 2:

\[f(x)=\lim _{n \rightarrow \infty} \cos ^{n}\left(\frac{1}{n^{x}}\right)\]

 

\[=e^{\lim _{n \rightarrow \infty} n \log \cos \left(\frac{1}{n^{x}}\right)}\]

 

=elimn→∞nlog[1−2sin2(12nx)]

\[=e^{\lim _{n \rightarrow \infty}\frac{ n \log [1-2 \sin ^{2}(\frac{1}{2 n^{x}})]}{-2 \sin ^{2}(\frac{1}{2 n^{x}})}(-2 \sin ^{2}(\frac{1}{2 n^{x}}))}\]

Hint 3:

As we have \(\frac{1}{n^x} \rightarrow 0 \) ,

\[lim_{n\rightarrow \infty}-2 \sin ^{2}\left(\frac{1}{2 n^{x}}\right)=0.\]

And we have the standard result :

\[lim_{x \rightarrow 0}\frac{log(1+x)}{x} = 1 \]

Hint 4:

Therefore ,

\[f(x)=e^{\lim _{n \rightarrow \infty} n [-2 \sin ^{2}(\frac{1}{2 n^{x}})]}\]

\[f(x)=e^{\lim _{n \rightarrow \infty} -2n [\frac{ \sin ^{2}(\frac{1}{2 n^x})}{(\frac{1}{2 n^{x}})^2}](\frac{1}{2 n^{x}})^2}\]

And here again,

\(lim_{n \rightarrow \infty}\frac{1}{2n^x} \rightarrow 0 .\)

So \(f(x)\) reduces to ,

\[ f(x) = e^{\lim _{n \rightarrow \infty}-2n (\frac{1}{2 n^{x}})^2}\]

\[f(x)=e^{-\frac{1}{2} \lim _{n \rightarrow \infty} n^{1-2 x}}\]

Hint 5:

Therefore ,

\[ f(x) = \Bigg{\{}{\begin{matrix}
0 & , & x < \frac{1}{2}\\
e^{-\frac{1}{2}} & ,& x= \frac{1}{2} \\1 & , & x> \frac{1}{2}
\end{matrix}}\]

Discontinuity at \(x= \frac{1}{2}\)



ISI Entrance Program at Cheenta

Subscribe to Cheenta at Youtube


 

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
magic-wandrockethighlight